Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Tampere, Ilokkaanpuisto district
Tartu, City centre area
Oulu, Kaukovainio
Maia, Sobreiro Social Housing
Barcelona, SEILAB & Energy SmartLab
Ankara, Çamlık District
Leipzig, Baumwollspinnerei district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthTampere, Ilokkaanpuisto districtTartu, City centre areaOulu, KaukovainioMaia, Sobreiro Social HousingBarcelona, SEILAB & Energy SmartLabAnkara, Çamlık DistrictLeipzig, Baumwollspinnerei district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnonoyesyes
PED relevant case studynoyesyesnononoyesno
PED Lab.yesnoyesnoyesyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesnoyesyes
Annual energy surplusyesnononononoyesno
Energy communityyesyesnononoyesyesno
Circularityyesnoyesyesnononono
Air quality and urban comfortnononononononoyes
Electrificationnoyesyesyesnoyesyesyes
Net-zero energy costnonononononoyesno
Net-zero emissionyesyesyesnonoyesyesno
Self-sufficiency (energy autonomous)noyesnononoyesnono
Maximise self-sufficiencynonoyesnoyesnoyesno
Othernononononoyesnoyes
Other (A1P004)Green ITNet-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseCompletedImplementation PhaseIn operationPlanning PhaseIn operationPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1804/1402/1610/2101/201110/22
A1P007: End Date
A1P007: End date12/2310/2307/2210/2402/201309/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512123.79808326.72273725.517595084093507-8.3735572.132.79536912.318458
      Y Coordinate (latitude):53.23484661.46408858.38071364.9928809817313241.13580441.339.88181251.326492
      A1P012: Country
      A1P012: CountryNetherlandsFinlandEstoniaFinlandPortugalSpainTurkeyGermany
      A1P013: City
      A1P013: CityGroningenTampereTartuOuluMaiaBarcelona and TarragonaAnkaraLeipzig
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaDfbDfbDfcCsbCsaDsbDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalVirtualFunctionalVirtualVirtualGeographicFunctional
      OtherRegional (close to virtual)Geographic
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPublicPublicPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED761862202572
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.019.00035217197002260017000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.13225.000793144600005080030000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesyesyesyesnononono
      A1P022a: Add the value in EUR if available [EUR]6500000
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesyesnonoyesnonono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnonononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesyesyesnoyesnonono
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnonono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesnoyesyesnoyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Positive externalities
      • Positive externalities,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      A1P023: OtherDeveloping and demonstrating new solutionsSustainable and replicable business models regarding renewable energy systems
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]255
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsSenior Scientist Terttu VainioJaanus TammSamuli RinneAdelina RodriguesDr. Jaume Salom, Dra. Cristina CorcheroProf. Dr. İpek Gürsel DİNOSimon Baum
      A1P027: OrganizationMunicipality of GroningenVTT Technical Research Centre of FinlandTartu City GovernmentCity of OuluMaia Municipality (CM Maia) – Energy and Mobility divisionIRECMiddle East Technical UniversityCENERO Energy GmbH
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOther
      A1P028: OtherCENERO Energy GmbH
      A1P029: EmailJasper.tonen@groningen.nlterttu.vainio@vtt.fiJaanus.tamm@tartu.eesamuli.rinne@ouka.fidscm.adelina@cm-maia.ptJsalom@irec.catipekg@metu.edu.trsib@cenero.de
      Contact person for other special topics
      A1P030: NameKaspar AlevSamuli RinneCarolina Gonçalves (AdEPorto)Assoc. Prof. Onur TaylanSimon Baum
      A1P031: EmailKaspar.alev@tartu.eesamuli.rinne@ouka.ficarolinagoncalves@adeporto.euotaylan@metu.edu.trsib@cenero.de
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYesNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not included. However, there is a charging place for a shared EV in one building.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility is not included in the calculations.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.309.12.13.4461.65
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.70.20.528
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.13.4240
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesyesnononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnoyesnoyesnonono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatyesnonononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesnonoyesnononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersPV plant of energy community locates outside of the city, not on the slotHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.72.33.9762.421
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesnononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononoyesnononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononoyesnononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononoyesnononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononoyesnononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononoyesnononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0003.28571428571430000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]09800
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthEncouraging a healthy lifestyle
      A2P022: Education
      A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
      A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionapply
      A2P022: Water
      A2P022: Economic developmentTotal investments, Payback time, Economic value of savings
      A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
      A2P022: WasteRecycling rate
      A2P022: OtherSmart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesyesno
      A2P023: Solar thermal collectorsyesnononoyesnonono
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemyesyesnononononono
      A2P023: Waste heat recoveryyesyesnoyesnononono
      A2P023: Waste to energyyesnonononononono
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnononoyesnononono
      A2P023: Heat Pumpyesyesnoyesyesnoyesno
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnonoyesyesnononono
      A2P023: Biogasnonoyesnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesnono
      A2P024: Energy management systemyesyesyesyesyesyesnono
      A2P024: Demand-side managementyesyesnononononono
      A2P024: Smart electricity gridnononononoyesnono
      A2P024: Thermal Storageyesnonoyesnononono
      A2P024: Electric Storageyesnononoyesyesnono
      A2P024: District Heating and Coolingyesnoyesyesnononono
      A2P024: Smart metering and demand-responsive control systemsyesyesnonoyesnonono
      A2P024: P2P – buildingsnononononononono
      A2P024: OtherElectric grid as virtual battery
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesyesyesnoyesno
      A2P025: Energy efficiency measures in historic buildingsyesnonononononono
      A2P025: High-performance new buildingsyesyesnoyesnononono
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnoyesnonono
      A2P025: Urban data platformsyesnoyesyesnononono
      A2P025: Mobile applications for citizensnoyesyesnonononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesyesyesyesno
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnonononoyesnonono
      A2P025: Smart surveillancenonoyesnonononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesyesyesyesnono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesyesnononono
      A2P026: e-Mobilityyesnoyesyesyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononono
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe obligatory buildijng energy classificationThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • New development strategies
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Biogas,
      • Hydrogen
      • Other
      • Electrification of Heating System based on Heat Pumps
      • Biogas
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.E. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Open data business models,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Demand management Living Lab
      • Innovative business models,
      • Other
      A3P006: Otheroperational savings through efficiency measures
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Behavioural Change / End-users engagement
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone
      • Other
      A3P009: OtherEnergy Positive, Low Emission ZonePositive Energy Balance for the demo site
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.PED-ACT project.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      • Preservation Area
      B1P006: Year of construction
      B1P006: Year of construction1986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential045003500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential3003500
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention01200.0583333333333330000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonoyesyesnonoyesno
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenononononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonoyesyesnononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesyesyesnononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonoyesyesnononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesnonoyesno
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenononononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesyesnononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonoyesyesnononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonoyesyesnononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictVirtualVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.IREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic
      • Strategic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Available data,
      • Life Cycle Analysis
      • Execution plan,
      • Available data,
      • Type of measured data
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Social models
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important4 - Important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important4 - Important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
      C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important4 - Important4 - Important4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important5 - Very important4 - Important4 - Important4 - Important5 - Very important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important
      C1P002: Economic growth need2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important
      C1P002: Energy autonomy/independence2 - Slightly important4 - Important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
      C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important5 - Very important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important
      C1P003: Fragmented and or complex ownership structure4 - Important3 - Moderately important5 - Very important2 - Slightly important5 - Very important5 - Very important5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important2 - Slightly important5 - Very important4 - Important5 - Very important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important4 - Important5 - Very important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important2 - Slightly important5 - Very important
      C1P005: Non-effective regulations3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important2 - Slightly important5 - Very important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important4 - Important
      C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant
      C1P007: Deficient planning2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important4 - Important
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P008: Rebound effect2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important5 - Very important5 - Very important
      C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant
      C1P010: Economic crisis1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important4 - Important
      C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important4 - Important2 - Slightly important4 - Important5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important
      C1P011: Energy price distortion4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important5 - Very important4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading
      C1P012: Real Estate developers
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • None
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)