Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
City of Espoo, Espoonlahti district, Lippulaiva block
Izmir, District of Karşıyaka
Istanbul, Kadikoy district, Caferaga
Ankara, Çamlık District
Borlänge, Rymdgatan’s Residential Portfolio
Vienna, Am Kempelenpark
Groningen, PED South
Lubia (Soria), CEDER-CIEMAT
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthCity of Espoo, Espoonlahti district, Lippulaiva blockIzmir, District of KarşıyakaIstanbul, Kadikoy district, CaferagaAnkara, Çamlık DistrictBorlänge, Rymdgatan’s Residential PortfolioVienna, Am KempelenparkGroningen, PED SouthLubia (Soria), CEDER-CIEMAT
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesnoyesnono
PED relevant case studynonononoyesyesnonono
PED Lab.yesnonononononoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyesno
Annual energy surplusyesnoyesnoyesyesyesyesno
Energy communityyesnonoyesyesyesnoyesno
Circularityyesnonononononoyesno
Air quality and urban comfortnonoyesnononononoyes
Electrificationnonononoyesyesnonono
Net-zero energy costnonoyesnoyesnononono
Net-zero emissionyesnononoyesnonoyesyes
Self-sufficiency (energy autonomous)nonononononononoyes
Maximise self-sufficiencynoyesyesnoyesyesnonono
Othernonononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1806/1810/2201/2010/2207/1612/1811/19
A1P007: End Date
A1P007: End date12/2303/2210/2512/2209/2502/2512/2312/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
  • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
    • TNO, Hanze, RUG,
    • Ped noord book
    • http://www.ceder.es/redes-inteligentes,
    • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
    • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
    A1P011: Geographic coordinates
    X Coordinate (longitude):6.53512124.654327.11004929.0263195268751732.79536915.39449516.3952926.590655-2.508
    Y Coordinate (latitude):53.23484660.149138.49605440.9884139524746139.88181260.48660948.17359853.20408741.603
    A1P012: Country
    A1P012: CountryNetherlandsFinlandTurkeyTurkeyTurkeySwedenAustriaNetherlandsSpain
    A1P013: City
    A1P013: CityGroningenEspooİzmirIstanbulAnkaraBorlängeViennaGroningenLubia - Soria
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfaDfbCsaCsbDsbDsbCwbCfaCfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicGeographicGeographicFunctionalGeographic
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedPrivatePrivateMixedPrivateMixedPrivateMixedPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED79211325710646
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1.011120001027951160522260037007.86
    A1P020: Total ground area
    A1P020: Total ground area [m²]17.13216500032600115172750800994545.0936400000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area013000000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesnononononoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Otheryesnonononononoyesno
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingyesnonononononoyesno
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingyesnonononononoyesno
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesyesyesyesyesnonoyesno
    A1P022i: Add the value in EUR if available [EUR]3088751193355
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnoyesnononoyes
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononoyes
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Positive externalities,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Other
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    A1P023: OtherBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production
    A1P024: More comments:
    A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameJasper Tonen, Elisabeth KoopsElina EkelundOzlem SenyolMr. Dogan UNERIProf. Dr. İpek Gürsel DİNOJingchun ShenGerhard HoferJasper Tonen, Elisabeth KoopsDr. Raquel Ramos
    A1P027: OrganizationMunicipality of GroningenCitycon OyjKarsiyaka MunicipalityMunicipality of KadikoyMiddle East Technical UniversityHögskolan Dalarnae7 energy innovation & engineeringMunicipality of GroningenCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)
    A1P028: AffiliationMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesResearch Center / University
    A1P028: Other
    A1P029: EmailJasper.tonen@groningen.nlElina.ekelund@citycon.comozlemkocaer2@gmail.comdogan.uneri@kadikoy.bel.tripekg@metu.edu.trjih@du.segerhard.hofer@e-sieben.atJasper.tonen@groningen.nlraquel.ramos@ciemat.es
    Contact person for other special topics
    A1P030: NameElina EkelundHasan Burak CavkaMrs. Damla MUHCU YILMAZAssoc. Prof. Onur TaylanXingxing ZhangDr. Oscar Seco
    A1P031: EmailElina.ekelund@citycon.comhasancavka@iyte.edu.trdamla.muhcu@kadikoy.bel.trotaylan@metu.edu.trxza@du.seoscar.seco@ciemat.es
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Digital technologies,
    • Indoor air quality
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesYesYesYesNoNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesNoYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Mobility is not included in the energy model.Mobility is not included in the calculations.Mobility is not included in the calculations.Mobility, till now, is not included in the energy model.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.35.53.8620.943.4460.67771.86
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.335.81.2260.100.5280.036561.45
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnoyesyesyesyesnononoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.541.0280.513.4240
    A2P011: Windnonononononononoyes
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononononoyes
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononononoyes
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononoyesnonono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
    A2P011: Othernonononononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesyesnononononoyesyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalyesnonoyesnononoyesyes
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
    A2P012: Biomass_heatyesnonononononoyesyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
    A2P012: Waste heat+HPyesnonononononoyesyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thyesnonononoyesnoyesno
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
    A2P012: Biomass_firewood_thnonononononononoyes
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Geothermal heatpump systems, Waste heat from data centers
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]11.35.0880.743.9760.318
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]5.760.490.2055
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonoyesnoyesnononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnonononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnonononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernononononoyesnonono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesyesnonononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707-0.26
    A2P018: Windnonononononononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernoyesnononoyesnonono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.260.187
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononoyesnonono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary01.05323193916351.4540311173975-2.269230769230800.53839572192513000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]06.93
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securitynone
    A2P022: Healththermal comfort diagram
    A2P022: Educationnone
    A2P022: Mobilitynone
    A2P022: EnergyOn-site energy rationormalized CO2/GHG & Energy intensity
    A2P022: Water
    A2P022: Economic developmentcost of excess emissions
    A2P022: Housing and Community
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesnoyesyes
    A2P023: Solar thermal collectorsyesnonoyesnoyesnoyesyes
    A2P023: Wind Turbinesnonononononononoyes
    A2P023: Geothermal energy systemyesyesnononoyesnoyesyes
    A2P023: Waste heat recoveryyesyesnononoyesnoyesyes
    A2P023: Waste to energyyesnonononononoyesno
    A2P023: Polygenerationnonononononononoyes
    A2P023: Co-generationnonononononononoyes
    A2P023: Heat Pumpyesnoyesyesyesyesnoyesyes
    A2P023: Hydrogennonononononononoyes
    A2P023: Hydropower plantnonononononononoyes
    A2P023: Biomassnonononononononoyes
    A2P023: Biogasnonononononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnononoyesnoyesyes
    A2P024: Energy management systemyesyesnononononoyesyes
    A2P024: Demand-side managementyesnononononononoyes
    A2P024: Smart electricity gridnoyesnonononononoyes
    A2P024: Thermal Storageyesyesnononoyesnoyesyes
    A2P024: Electric Storageyesyesnononononoyesyes
    A2P024: District Heating and Coolingyesnonononoyesnoyesyes
    A2P024: Smart metering and demand-responsive control systemsyesnonononononoyesyes
    A2P024: P2P – buildingsnonononononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnonoyesnoyesyesnonoyes
    A2P025: Energy efficiency measures in historic buildingsyesnonononononoyesno
    A2P025: High-performance new buildingsyesyesnononononoyesno
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnononononoyesno
    A2P025: Urban data platformsyesnonononononoyesno
    A2P025: Mobile applications for citizensnonononononononono
    A2P025: Building services (HVAC & Lighting)noyesyesnoyesyesnonoyes
    A2P025: Smart irrigationnonononononononono
    A2P025: Digital tracking for waste disposalnonononononononono
    A2P025: Smart surveillancenonononononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonononononononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnonononononono
    A2P026: e-Mobilityyesyesnononononoyesno
    A2P026: Soft mobility infrastructures and last mile solutionsnonononononononono
    A2P026: Car-free areanonononononononoyes
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoNoNoNoYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate => Energy efficiency class B (2018 version)Energy Performance CertificateIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesNoNoNoNoNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Blockchain
    • Innovative business models
    • Innovative business models,
    • PPP models,
    • Circular economy models,
    • Demand management Living Lab,
    • Local trading
    • Open data business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Local trading
    • Innovative business models,
    • Blockchain
    • Demand management Living Lab
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Affordability,
    • Digital Inclusion
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Digital Inclusion,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • District Energy plans,
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Other
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint
    • Energy Neutral,
    • Low Emission Zone
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Sustainable Urban drainage systems (SUDS)
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction,
    • Greening strategies
    A3P009: OtherCarbon free in terms of energyEnergy Positive, Low Emission Zone
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersPED-ACT project.Borlänge city has committed to become the carbon-neutral city by 2030.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaUrban areaRural
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • Renovation
    • Renovation
    • Renovation
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction2022200519861990
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential23.379100
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential100
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential6
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential6
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000000.010658622423328000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonoyesyesyesyesnonono
    B1P013 - Residential: Specify the sqm [m²]102795508004360
    B1P013: Officenononoyesnonoyesnono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynonononononononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnoyesnoyesnonoyesnono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnoyesnonononononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononoyesnoyesnonono
    B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2706
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnoyesyesyesyesyesyesnono
    B1P014 - Residential: Specify the sqm [m²]102795508004360
    B1P014: Officenononoyesnonoyesnono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnoyesnoyesnonoyesnono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonononononononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonononononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonononononononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononoyesnoyesnonono
    B1P014 - Other: Specify the sqm [m²]706
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.CEDER will follow an integrative approach including technology for a permanent installation.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    • Civic
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Industrial
    B2P009: Otherresearch companies, monitoring company, ict companyresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Energy storage,
    • Energy networks,
    • Efficiency measures,
    • Information and Communication Technologies (ICT),
    • Ambient measures,
    • Social interactions
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    • Tools for prototyping and modelling
    • Monitoring and evaluation infrastructure,
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Equipment
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    • Energy,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    • Energy modelling,
    • Social models,
    • Business and financial models
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
    C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
    C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P001: Social acceptance (top-down)3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important2 - Slightly important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important
    C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P002: Economic growth need2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P002: Territorial and market attractiveness2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
    C1P002: Energy autonomy/independence2 - Slightly important4 - Important5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
    C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extractionEarthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P005: Non-effective regulations3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 12 - Slightly important3 - Moderately important
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Deficient planning2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
    C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Grid congestion, grid instability4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P008: Rebound effect2 - Slightly important3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
    C1P008: Exclusion of socially disadvantaged groups5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
    C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs2 - Slightly important2 - Slightly important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
    C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P011: Energy price distortion4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Design/demand aggregation,
    • Construction/implementation
    • None
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • None
    • Planning/leading
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Urban Services providers
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading
    C1P012: Real Estate developers
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation
    • Construction/implementation
    • None
    C1P012: Design/Construction companies
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • None
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • None
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • None
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)