Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Tampere, Ilokkaanpuisto district
Luxembourg, Betzdorf
Graz, Reininghausgründe
Lubia (Soria), CEDER-CIEMAT
Riga, Ķīpsala, RTU smart student city
Uden, Loopkantstraat
Lund, Brunnshög district
Vantaa, Aviapolis
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaTampere, Ilokkaanpuisto districtLuxembourg, BetzdorfGraz, ReininghausgründeLubia (Soria), CEDER-CIEMATRiga, Ķīpsala, RTU smart student cityUden, LoopkantstraatLund, Brunnshög districtVantaa, Aviapolis
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesnoyesyes
PED relevant case studyyesyesyesnononoyesnoyes
PED Lab.yesnononoyesnononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyesyesyesyes
Annual energy surplusnonoyesnononoyesyesno
Energy communitynoyesyesnonoyesnoyesno
Circularityyesnoyesnonononoyesyes
Air quality and urban comfortnonoyesnoyesnonoyesno
Electrificationyesyesyesnononoyesyesno
Net-zero energy costnonononononononono
Net-zero emissionyesyesnonoyesnonoyesno
Self-sufficiency (energy autonomous)noyesnonoyesyesnonono
Maximise self-sufficiencyyesnonononoyesnonono
Othernononononononoyesno
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseCompletedImplementation PhaseImplementation PhaseImplementation PhasePlanning PhaseIn operationIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date02/1604/1406/23201911/1901/2406/17201501/23
A1P007: End Date
A1P007: End date07/2210/2304/26202512/2312/2605/23204012/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • None yet, but coming
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
A1P011: Geographic coordinates
X Coordinate (longitude):26.72273723.7980836.36160215.407440-2.50824.081683395.619113.23246940076959924.958821
Y Coordinate (latitude):58.38071361.46408849.68277447.060741.60356.9524595651.660655.7198979220719360.305488
A1P012: Country
A1P012: CountryEstoniaFinlandLuxembourgAustriaSpainLatviaNetherlandsSwedenFinland
A1P013: City
A1P013: CityTartuTampereBetzdorfGrazLubia - SoriaRigaUdenLundVantaa
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCfbDfbCfbCfbCfbDfbDfb
A1P015: District boundary
A1P015: District boundaryFunctionalVirtualGeographicGeographicGeographicGeographicGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivateMixedPublicMixedPublicPublicPrivatePublicMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED186241006151200
A1P019: Conditioned space
A1P019: Conditioned space [m²]352179.000173.817000023601500000
A1P020: Total ground area
A1P020: Total ground area [m²]79314425.00010000006400000119264386015000003881000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000001110
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesyesnoyesnonoyesyesyes
A1P022a: Add the value in EUR if available [EUR]6500000780444099999999
A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernoyesnonononononoyes
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnonononononoyesno
A1P022d: Add the value in EUR if available [EUR]40000001000000
A1P022e: Financing - PUBLIC - National fundingyesyesnoyesnononoyesno
A1P022e: Add the value in EUR if available [EUR]800000030000000
A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
A1P022f: Add the value in EUR if available [EUR]30000000
A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnononoyesyes
A1P022g: Add the value in EUR if available [EUR]180000000
A1P022h: Financing - PUBLIC - Othernonoyesnononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesnononoyesnoyesyes
A1P022i: Add the value in EUR if available [EUR]75000002000000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Boosting local and sustainable production
  • Other
  • Job creation,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Other
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherWorld class sustainable living and research environments
A1P024: More comments:
A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
Contact person for general enquiries
A1P026: NameJaanus TammSenior Scientist Terttu VainioJulien BertucciKatharina SchwarzDr. Raquel RamosJudith StiekemaTonje Healey TrulsrudMarkus PaulssonEira Linko
A1P027: OrganizationTartu City GovernmentVTT Technical Research Centre of FinlandSNHBMStadtLABOR, Innovationen für urbane Lebensqualität GmbHCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)OASCNorwegian University of Science and Technology (NTNU)City of LundCity of Vantaa
A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesSME / IndustryResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public Bodies
A1P028: Othernot for profit private organisation
A1P029: EmailJaanus.tamm@tartu.eeterttu.vainio@vtt.fijulien.bertucci@snhbm.lukatharina.schwarz@stadtlaborgraz.atraquel.ramos@ciemat.esjudith@oascities.orgtonje.h.trulsrud@ntnu.nomarkus.paulsson@lund.seeira.linko@vantaa.fi
Contact person for other special topics
A1P030: NameKaspar AlevHans SchnitzerDr. Oscar SecoEva Dalman
A1P031: EmailKaspar.alev@tartu.eehans.schnitzer@stadtlaborgraz.atoscar.seco@ciemat.eseva.dalman@lund.se
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy production,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Water use,
  • Indoor air quality,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Waste management,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Waste management,
  • Construction materials,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials,
  • Other
A2P001: OtherUrban Management; Air QualityWalkability and biking
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNoNoYesNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesYesYesNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoYesNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.not includedToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.1080000.14825
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.750000.10930
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesnoyesyesnoyesyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.058
A2P011: Windnonononoyesyesnoyesno
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononoyesnononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononoyesnononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononoyesnonono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnoyesnoyesyesnoyesnoyes
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesnonoyesyesnononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
A2P012: Biomass_heatnonononoyesyesnonono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnononoyesyesnonoyesyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
A2P012: Biomass_peat_heatnonononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononoyesnononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesPV plant of energy community locates outside of the city, not on the slotGroundwater (used for heat pumps)Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.*Annual energy use below is presentedin primary energy consumption
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.70.194
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]0.0368
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononoyesnonono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononoyesnononoyesyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononoyesnononoyesyes
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononoyesnononoyesyes
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononononoyesyes
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononoyesnonononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononoyesnonononoyes
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononoyesnonononoyes
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]98000.036-0.00043
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & SecurityPersonal Safety
A2P022: HealthHealthy community
A2P022: Education
A2P022: MobilityxSustainable mobilityMaximum 1/3 transport with car
A2P022: EnergyxNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionLocal energy production 150% of energy need
A2P022: Waterx
A2P022: Economic developmentxcapital costs, operational cots, overall economic performance (5 KPIs)
A2P022: Housing and Communityxdemographic composition, diverse community, social cohesion50% rental apartments and 50% owner apartments
A2P022: Waste
A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesnoyesyesnoyesyesyes
A2P023: Solar thermal collectorsnonononoyesnonoyesno
A2P023: Wind Turbinesnonononoyesnonoyesno
A2P023: Geothermal energy systemnoyesnonoyesnoyesyesyes
A2P023: Waste heat recoverynoyesnoyesyesnonoyesyes
A2P023: Waste to energynonononononononoyes
A2P023: Polygenerationnonononoyesnonoyesyes
A2P023: Co-generationnonononoyesnononono
A2P023: Heat Pumpnoyesnoyesyesnoyesyesyes
A2P023: Hydrogennonononoyesnonoyesno
A2P023: Hydropower plantnonononoyesnononono
A2P023: Biomassyesnononoyesnononoyes
A2P023: Biogasyesnononononononono
A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesnoyesyes
A2P024: Energy management systemyesyesyesnoyesyesyesyesyes
A2P024: Demand-side managementnoyesnonoyesyesyesyesyes
A2P024: Smart electricity gridnonononoyesyesnoyesyes
A2P024: Thermal Storagenononoyesyesyesnoyesyes
A2P024: Electric Storagenonoyesnoyesyesnoyesyes
A2P024: District Heating and Coolingyesnonoyesyesyesnoyesyes
A2P024: Smart metering and demand-responsive control systemsnoyesnonoyesyesyesyesyes
A2P024: P2P – buildingsnonononononononono
A2P024: OtherElectric grid as virtual batteryThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesnononoyesnononono
A2P025: Energy efficiency measures in historic buildingsnonononononononono
A2P025: High-performance new buildingsnoyesyesyesnonoyesyesyes
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnononoyesno
A2P025: Urban data platformsyesnonononoyesnoyesno
A2P025: Mobile applications for citizensyesyesnoyesnoyesnonono
A2P025: Building services (HVAC & Lighting)noyesyesnoyesyesyesyesyes
A2P025: Smart irrigationnononoyesnonononono
A2P025: Digital tracking for waste disposalnononononononoyesno
A2P025: Smart surveillanceyesnononononononono
A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnonoyesnonononoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnononoyesyes
A2P026: e-Mobilityyesnoyesyesnononoyesyes
A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononoyesyes
A2P026: Car-free areanononoyesyesnonoyesno
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementWalkability
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesYesNoYesYesYes
A2P028: If yes, please specify and/or enter notesEnergieausweis mandatory if buildings/ flats/ apartments are soldIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingEPC = 0, energy neutral buildingMiljöbyggnad silver/guld
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoYesYesNoNoNoNo
A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.City strategy: Net climate neutrality 2030Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: OtherNo gas grid in Brunnshög
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Open data business models,
  • Circular economy models
  • PPP models,
  • Local trading
  • Demand management Living Lab
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
  • PPP models,
  • Other
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
A3P006: OtherAttractivenes
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Affordability,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Quality of Life
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Quality of Life,
  • Strategies towards social mix
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • SECAP Updates
  • Building / district Certification
  • Strategic urban planning,
  • City Vision 2050,
  • Building / district Certification
  • District Energy plans,
  • Building / district Certification
  • Digital twinning and visual 3D models
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • SECAP Updates
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Net zero carbon footprint,
  • Carbon-free,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Energy Neutral
  • Net zero carbon footprint,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaSuburban areaRuralUrban areaRuralUrban areaSuburban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction
  • New construction,
  • Renovation
  • New construction
  • New construction
  • New construction
  • New construction,
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • New Development
  • New Development
  • New Development
  • New Development
  • New Development
  • Re-use / Transformation Area,
  • New Development
B1P006: Year of construction
B1P006: Year of construction2025
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential4500000
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential3001000018000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential02000
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential22000
B1P011: Population density before intervention
B1P011: Population density before intervention000000000
B1P012: Population density after intervention
B1P012: Population density after intervention01200.010000.0266666666666670
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnononononononoyes
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenononononononoyesyes
B1P013 - Office: Specify the sqm [m²]60000
B1P013: Industry and Utilitynononoyesnonononoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnononononononoyes
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononononononoyes
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesyesnoyesnononoyesno
B1P013 - Natural areas: Specify the sqm [m²]2000000
B1P013: Recreationalyesnononononononoyes
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonononononononoyes
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononononoyesno
B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesnoyesnonoyesyesyes
B1P014 - Residential: Specify the sqm [m²]2394600000
B1P014: Officenononoyesnononoyesyes
B1P014 - Office: Specify the sqm [m²]650000
B1P014: Industry and Utilitynonononononononoyes
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonoyesnonononoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononoyesnononoyesyes
B1P014 - Institutional: Specify the sqm [m²]50000
B1P014: Natural areasyesnonoyesnonononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnonoyesnononoyesyes
B1P014 - Recreational: Specify the sqm [m²]400000
B1P014: Dismissed areasnonononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
B2P002: Installation life time
B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
B2P003: Scale of action
B2P003: ScaleDistrictDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
  • Strategic
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
  • Academia,
  • Industrial
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT),
  • Ambient measures,
  • Social interactions
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
B2P019: Available tools
B2P019: Available tools
  • Social models
  • Energy modelling
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.To follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important5 - Very important5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important4 - Important3 - Moderately important5 - Very important
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important4 - Important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important
C1P001: Social acceptance (top-down)4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
C1P001: Presence of integrated urban strategies and plans5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important5 - Very important5 - Very important5 - Very important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important5 - Very important4 - Important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important5 - Very important4 - Important
C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important
C1P002: Energy autonomy/independence4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
C1P003: Fragmented and or complex ownership structure5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
C1P006: Environmental barriers
C1P006: Environmental barriers3 - Moderately important?
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Rebound effect3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
C1P010: Economic crisis3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
C1P010: Risk and uncertainty4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important5 - Very important4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important
C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
C1P011: Energy price distortion3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Design/demand aggregation
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Business process management
  • Planning/leading
  • Planning/leading,
  • Construction/implementation
  • None
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Urban Services providers
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • None
  • Planning/leading,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Design/demand aggregation
  • Monitoring/operation/management
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Design/demand aggregation,
  • Monitoring/operation/management
  • None
  • Design/demand aggregation
  • None
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Other
  • None
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)