Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Uncompare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Uncompare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Uncompare |
Title | Tartu, City centre area | Kifissia, Energy community | Oulu, Kaukovainio | Zaragoza, Actur | Barcelona, SEILAB & Energy SmartLab | Tampere, Ilokkaanpuisto district | Ankara, Çamlık District | Istanbul, Kadikoy district, Caferaga |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Tartu, City centre area | Kifissia, Energy community | Oulu, Kaukovainio | Zaragoza, Actur | Barcelona, SEILAB & Energy SmartLab | Tampere, Ilokkaanpuisto district | Ankara, Çamlık District | Istanbul, Kadikoy district, Caferaga |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
|
| ||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | no | yes | no | no | no | yes | yes |
PED relevant case study | yes | yes | no | yes | no | yes | yes | no |
PED Lab. | yes | no | no | no | yes | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | yes | no | yes | yes | no | yes | yes | yes |
Annual energy surplus | no | no | no | yes | no | no | yes | no |
Energy community | no | yes | no | no | yes | yes | yes | yes |
Circularity | yes | no | yes | no | no | no | no | no |
Air quality and urban comfort | no | yes | no | no | no | no | no | no |
Electrification | yes | yes | yes | yes | yes | yes | yes | no |
Net-zero energy cost | no | no | no | no | no | no | yes | no |
Net-zero emission | yes | no | no | yes | yes | yes | yes | no |
Self-sufficiency (energy autonomous) | no | no | no | no | yes | yes | no | no |
Maximise self-sufficiency | yes | no | no | no | no | no | yes | no |
Other | no | no | no | no | yes | no | no | no |
Other (A1P004) | Green IT | |||||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | Planning Phase | In operation | Planning Phase | In operation | Completed | Planning Phase | Planning Phase |
A1P006: Start Date | ||||||||
A1P006: Start date | 02/16 | 01/23 | 01/2011 | 04/14 | 10/22 | 01/20 | ||
A1P007: End Date | ||||||||
A1P007: End date | 07/22 | 02/2013 | 10/23 | 09/25 | 12/22 | |||
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
| |||
A1P009: Other | ||||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| ||||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 26.722737 | 23.814588 | 25.517595084093507 | -0.8891 | 2.1 | 23.798083 | 32.795369 | 29.02631952687517 |
Y Coordinate (latitude): | 58.380713 | 38.077349 | 64.99288098173132 | 41.6488 | 41.3 | 61.464088 | 39.881812 | 40.98841395247461 |
A1P012: Country | ||||||||
A1P012: Country | Estonia | Greece | Finland | Spain | Spain | Finland | Turkey | Turkey |
A1P013: City | ||||||||
A1P013: City | Tartu | Municipality of Kifissia | Oulu | Zaragoza | Barcelona and Tarragona | Tampere | Ankara | Istanbul |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Csa | Dfc | BSk | Csa | Dfb | Dsb | Csb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Functional | Virtual | Geographic | Virtual | Virtual | Geographic | Geographic | |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Regional (close to virtual) | ||||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Private | Mixed | Public | Public | Mixed | Private | Mixed | |
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | |
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 18 | 6 | 6 | 0 | 6 | 257 | 13 | |
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 35217 | 19700 | 9.000 | 22600 | 116052 | |||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 793144 | 60000 | 25.000 | 50800 | 1151727 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | yes | no | yes | no | no | yes | no | no |
A1P022a: Add the value in EUR if available [EUR] | 6500000 | |||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | yes | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | yes | no | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 4000000 | |||||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | no | no | yes | no | no |
A1P022e: Add the value in EUR if available [EUR] | 8000000 | |||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | yes | no | no | no | no | no |
A1P022g: Add the value in EUR if available [EUR] | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | no | no | yes | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | ||||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | no | yes | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
|
|
| ||
A1P023: Other | Developing and demonstrating new solutions | Boosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production | ||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | ||||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 25 | 5 | ||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Jaanus Tamm | Artemis Giavasoglou, Kleopatra Kalampoka | Samuli Rinne | Clara Lorente | Dr. Jaume Salom, Dra. Cristina Corchero | Senior Scientist Terttu Vainio | Prof. Dr. İpek Gürsel DİNO | Mr. Dogan UNERI |
A1P027: Organization | Tartu City Government | Municipality of Kifissia – SPARCS local team | City of Oulu | CIRCE | IREC | VTT Technical Research Centre of Finland | Middle East Technical University | Municipality of Kadikoy |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Research Center / University | Research Center / University | Research Center / University | Municipality / Public Bodies |
A1P028: Other | ||||||||
A1P029: Email | Jaanus.tamm@tartu.ee | giavasoglou@kifissia.gr | samuli.rinne@ouka.fi | CLORENTEM@FCIRCE.COM | Jsalom@irec.cat | terttu.vainio@vtt.fi | ipekg@metu.edu.tr | dogan.uneri@kadikoy.bel.tr |
Contact person for other special topics | ||||||||
A1P030: Name | Kaspar Alev | Stavros Zapantis - vice mayor | Samuli Rinne | Assoc. Prof. Onur Taylan | Mrs. Damla MUHCU YILMAZ | |||
A1P031: Email | Kaspar.alev@tartu.ee | stavros.zapantis@gmail.com | samuli.rinne@ouka.fi | otaylan@metu.edu.tr | damla.muhcu@kadikoy.bel.tr | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
A2P001: Other | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP) | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles; | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | |||
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | No | No | Yes | Yes | |||
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | No | Yes | Yes | Yes | No | ||
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | Yes | No | No | |||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Not included. However, there is a charging place for a shared EV in one building. | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | Mobility is not included in the calculations. | |||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 9.1 | 2.1 | 0 | 3.446 | 0.94 | |||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.2 | 0.7 | 0.528 | 0.10 | ||||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | ||||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | yes | no | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.1 | 0.7 | 3.4240 | 0.51 | ||||
A2P011: Wind | no | no | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Other | no | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | no | no | no | yes | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | yes | no | no | no | no | no | no | yes |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.5 | 0.08 | ||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Waste heat+HP | no | no | yes | no | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 2.2 | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | PV plant of energy community locates outside of the city, not on the slot | Two scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed. | |||||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 2.3 | 0.7 | 3.976 | 0.74 | ||||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | 0.49 | |||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | 0 | |||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | no | no | no | yes | no | yes | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | no | yes | no | no | no | no | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | -0.26 | |||||||
A2P018: Wind | no | no | yes | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | no | yes | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | no | yes | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | no | yes | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | no | yes | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | |||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 3.2857142857143 | 0 | 0 | 0 | 0 | -2.2692307692308 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 980 | 0 | 0 | |||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | ||||||||
A2P022: Health | Encouraging a healthy lifestyle | |||||||
A2P022: Education | ||||||||
A2P022: Mobility | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | |||||||
A2P022: Energy | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | |||||||
A2P022: Water | ||||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | |||||||
A2P022: Housing and Community | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | |||||||
A2P022: Waste | Recycling rate | |||||||
A2P022: Other | Smart Cities strategies, Quality of open data | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | yes | no | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | no | no | no | no | no | yes |
A2P023: Wind Turbines | no | no | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | no | yes | no | yes | no | no |
A2P023: Waste heat recovery | no | no | yes | no | no | yes | no | no |
A2P023: Waste to energy | no | no | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | no | no | no | no |
A2P023: Co-generation | no | no | yes | no | no | no | no | no |
A2P023: Heat Pump | no | no | yes | yes | no | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no |
A2P023: Biomass | yes | no | yes | no | no | no | no | no |
A2P023: Biogas | yes | no | no | no | no | no | no | no |
A2P023: Other | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | no | yes | no | yes | yes | no | no |
A2P024: Energy management system | yes | no | yes | yes | yes | yes | no | no |
A2P024: Demand-side management | no | no | no | no | no | yes | no | no |
A2P024: Smart electricity grid | no | no | no | no | yes | no | no | no |
A2P024: Thermal Storage | no | no | yes | no | no | no | no | no |
A2P024: Electric Storage | no | no | no | no | yes | no | no | no |
A2P024: District Heating and Cooling | yes | no | yes | no | no | no | no | no |
A2P024: Smart metering and demand-responsive control systems | no | no | no | no | no | yes | no | no |
A2P024: P2P – buildings | no | no | no | no | no | no | no | no |
A2P024: Other | Electric grid as virtual battery | |||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | yes | no | yes | no | no | no | yes | no |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no | no | no |
A2P025: High-performance new buildings | no | no | yes | no | no | yes | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | no | no | no | no | no |
A2P025: Urban data platforms | yes | no | yes | no | no | no | no | no |
A2P025: Mobile applications for citizens | yes | no | no | no | no | yes | no | no |
A2P025: Building services (HVAC & Lighting) | no | no | yes | no | yes | yes | yes | no |
A2P025: Smart irrigation | no | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | no | no | no |
A2P025: Smart surveillance | yes | no | no | no | no | no | no | no |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | no | yes | no | yes | no | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | no | yes | no | no | no | no | no |
A2P026: e-Mobility | yes | no | yes | yes | no | no | no | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | yes | no | no | no | no | no |
A2P026: Car-free area | no | no | no | no | no | no | no | no |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | No | No | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | The obligatory buildijng energy classification | ||||||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | No | No | No | No | ||||
A2P029: If yes, please specify and/or enter notes | ||||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | Carbon neutrality by 2035 | |||||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
| ||||
A3P003: Other | ||||||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | Developing and demonstrating solutions for carbon neutrality | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | |||||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | E. g. visualizing energy and water consumption | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | ||||||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
|
|
| |||
A3P006: Other | ||||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
|
|
| ||
A3P007: Other | ||||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
|
|
|
| |||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
|
|
| ||
A3P009: Other | Energy Positive, Low Emission Zone | |||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | |||||||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | The original idea is that the area produces at least as much it consumes. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | ||||||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | Developing systems towards carbon neutrality. Also urban renewal. | PED-ACT project. | ||||||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Urban area | Suburban area | Suburban area | Urban area | ||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
|
|
| ||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
|
| ||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 1986 | |||||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 4500 | 3500 | 0 | 23.379 | ||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | 3500 | 300 | ||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0 | 0.058333333333333 | 0 | 0 | 12 | 0 | 0 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | yes | no | yes | no | no | no | yes | yes |
B1P013 - Residential: Specify the sqm [m²] | 50800 | |||||||
B1P013: Office | no | no | no | no | no | no | no | yes |
B1P013 - Office: Specify the sqm [m²] | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | yes | no | yes | no | no | no | no | yes |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||||
B1P013: Natural areas | yes | no | yes | no | no | yes | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||||
B1P013: Recreational | yes | no | yes | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | no | no | no | no | no | no | yes |
B1P013 - Other: Specify the sqm [m²] | Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2 | |||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | yes | no | yes | no | no | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 50800 | |||||||
B1P014: Office | no | no | no | no | no | no | no | yes |
B1P014 - Office: Specify the sqm [m²] | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | yes | no | yes | no | no | no | no | yes |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | no | no | no | no | no | no | no |
B1P014 - Institutional: Specify the sqm [m²] | ||||||||
B1P014: Natural areas | yes | no | yes | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | yes | no | yes | no | no | no | no | no |
B1P014 - Recreational: Specify the sqm [m²] | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | no | no | no | no | no | yes |
B1P014 - Other: Specify the sqm [m²] | ||||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | ||||||||
B2P003: Scale of action | ||||||||
B2P003: Scale | District | Virtual | ||||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | IREC | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | ||||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | ||||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||||
B2P009: Other | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
|
| ||||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
|
| ||||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | ||||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | |||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
|
| ||||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P001: Storage systems and E-mobility market penetration | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 2 - Slightly important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 5 - Very important |
C1P001: Social acceptance (top-down) | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P002: Economic growth need | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P002: Energy autonomy/independence | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | ||||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P003: Lack of public participation | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: Fragmented and or complex ownership structure | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | ||||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 4 - Important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 2 - Slightly important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | ||||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P005: Regulatory instability | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P005: Non-effective regulations | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 5 - Very important | 4 - Important |
C1P005: Unfavorable local regulations for innovative technologies | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P005: Building code and land-use planning hindering innovative technologies | 2 - Slightly important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | laws favouring big energy companies | |||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | |||||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Deficient planning | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P007: Retrofitting work in dwellings in occupied state | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P007: Grid congestion, grid instability | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P007: Difficult definition of system boundaries | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | ||||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 2 - Slightly important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Difficulty of finding and engaging relevant actors | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant |
C1P008: Lack of trust beyond social network | 2 - Slightly important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P008: Rebound effect | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important |
C1P008: Hostile or passive attitude towards environmentalism | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P010: Economic crisis | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | |
C1P010: Risk and uncertainty | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P011: Energy price distortion | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
|
|
| ||||
C1P012: Research & Innovation |
|
|
|
| ||||
C1P012: Financial/Funding |
|
|
|
| ||||
C1P012: Analyst, ICT and Big Data |
|
|
|
| ||||
C1P012: Business process management |
|
|
|
| ||||
C1P012: Urban Services providers |
|
|
|
| ||||
C1P012: Real Estate developers |
|
|
|
| ||||
C1P012: Design/Construction companies |
|
|
|
| ||||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| ||||
C1P012: Social/Civil Society/NGOs |
|
|
|
| ||||
C1P012: Industry/SME/eCommerce |
|
|
|
| ||||
C1P012: Other | ||||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)