Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Uden, Loopkantstraat
Ankara, Çamlık District
Maia, Sobreiro Social Housing
Lubia (Soria), CEDER-CIEMAT
Kladno, Sletiště (Sport Area), PED Winter Stadium
Amsterdam, Buiksloterham PED
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityUden, LoopkantstraatAnkara, Çamlık DistrictMaia, Sobreiro Social HousingLubia (Soria), CEDER-CIEMATKladno, Sletiště (Sport Area), PED Winter StadiumAmsterdam, Buiksloterham PEDBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnononoyesno
PED relevant case studyyesyesyesnonoyesnoyes
PED Lab.nononoyesyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyesyes
Annual energy surplusnoyesyesnonoyesyesyes
Energy communityyesnoyesnonoyesyesyes
Circularitynonononononoyesno
Air quality and urban comfortyesnononoyesnonono
Electrificationyesyesyesnonoyesyesyes
Net-zero energy costnonoyesnonononono
Net-zero emissionnonoyesnoyesnoyesno
Self-sufficiency (energy autonomous)nonononoyesnonono
Maximise self-sufficiencynonoyesyesnononoyes
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/1710/2210/2111/19202211/19
A1P007: End Date
A1P007: End date05/2309/2510/2412/2310/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.8145885.619132.795369-8.373557-2.50814.092964.904115.394495
          Y Coordinate (latitude):38.07734951.660639.88181241.13580441.60350.1371552.367660.486609
          A1P012: Country
          A1P012: CountryGreeceNetherlandsTurkeyPortugalSpainCzech RepublicNetherlandsSweden
          A1P013: City
          A1P013: CityMunicipality of KifissiaUdenAnkaraMaiaLubia - SoriaKladnoAmsterdamBorlänge
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDsbCsbCfbCfbCfbDsb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicGeographicFunctionalGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PrivatePrivatePublicPublicMixedMixedMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED125722686010
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]236022600285003700
          A1P020: Total ground area
          A1P020: Total ground area [m²]38605080064000009945
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area01000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenoyesnononoyesyesno
          A1P022a: Add the value in EUR if available [EUR]7804440
          A1P022b: Financing - PRIVATE - ESCO schemenononononoyesnono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononoyesnononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononoyesnononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononoyesnononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesyesno
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnoyesyesnono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnonono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Positive externalities
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaTonje Healey TrulsrudProf. Dr. İpek Gürsel DİNOAdelina RodriguesDr. Raquel RamosDavid ŠkorňaOmar ShafqatJingchun Shen
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamNorwegian University of Science and Technology (NTNU)Middle East Technical UniversityMaia Municipality (CM Maia) – Energy and Mobility divisionCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)Město KladnoAmsterdam University of Applied SciencesHögskolan Dalarna
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
          A1P028: Other
          A1P029: Emailgiavasoglou@kifissia.grtonje.h.trulsrud@ntnu.noipekg@metu.edu.trdscm.adelina@cm-maia.ptraquel.ramos@ciemat.esdavid.skorna@mestokladno.czo.shafqat@hva.nljih@du.se
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorAssoc. Prof. Onur TaylanCarolina Gonçalves (AdEPorto)Dr. Oscar SecoMichal KuzmičOmar ShafqatXingxing Zhang
          A1P031: Emailstavros.zapantis@gmail.comotaylan@metu.edu.trcarolinagoncalves@adeporto.euoscar.seco@ciemat.esmichal.kuzmic@cvut.czo.shafqat@hva.nlxza@du.se
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy production,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Trnsys, PV modelling tools, CADCity vision, Innovation AteliersLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000YesYesNoNoNoYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYesNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationnot includedMobility is not included in the calculations.Not yet included.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1483.4461.40.6777
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.5280.30.03656
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesyesyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0583.42401.1
          A2P011: Windnonononoyesnonono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononoyesnonono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononoyesnoyesno
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononononoyes
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnoyesnonoyesnoyesno
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononoyesyesnonono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononoyesnoyesno
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnonononoyesyesyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononoyes
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononoyesnonono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionWaste heat from cooling the ice rink.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.1943.9762.10.318
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.03680.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesnononoyesno
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononoyesno
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononoyesno
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononoyes
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononoyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononononoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononoyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononoyesno
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononoyesno
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononoyes
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononoyesno
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononoyesno
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononoyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononoyesno
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononoyesno
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononoyesno
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononoyesno
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononoyes
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000.53839572192513
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043-1042506.93
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safetynone
          A2P022: HealthHealthy communitythermal comfort diagram
          A2P022: Educationnone
          A2P022: MobilitySustainable mobilitynone
          A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balancenormalized CO2/GHG & Energy intensity
          A2P022: Water
          A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIcost of excess emissions
          A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
          A2P022: Waste
          A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnononoyesyesnonoyes
          A2P023: Wind Turbinesnonononoyesnonono
          A2P023: Geothermal energy systemnoyesnonoyesnoyesyes
          A2P023: Waste heat recoverynonononoyesyesyesyes
          A2P023: Waste to energynonononononoyesno
          A2P023: Polygenerationnonononoyesnonono
          A2P023: Co-generationnonononoyesnonono
          A2P023: Heat Pumpnoyesyesyesyesyesyesyes
          A2P023: Hydrogennonononoyesnonono
          A2P023: Hydropower plantnonononoyesnonono
          A2P023: Biomassnonononoyesnoyesno
          A2P023: Biogasnonononononoyesno
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesyesyesyesyes
          A2P024: Energy management systemnoyesnoyesyesyesyesno
          A2P024: Demand-side managementnoyesnonoyesyesyesno
          A2P024: Smart electricity gridnonononoyesnoyesno
          A2P024: Thermal Storagenonononoyesnoyesyes
          A2P024: Electric Storagenononoyesyesnoyesno
          A2P024: District Heating and Coolingnonononoyesyesyesyes
          A2P024: Smart metering and demand-responsive control systemsnoyesnoyesyesyesyesno
          A2P024: P2P – buildingsnonononononoyesno
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesyesyesyesyesyes
          A2P025: Energy efficiency measures in historic buildingsnonononononoyesno
          A2P025: High-performance new buildingsnoyesnonononoyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnonoyesno
          A2P025: Urban data platformsnononononoyesyesno
          A2P025: Mobile applications for citizensnonononononoyesno
          A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesyesyes
          A2P025: Smart irrigationnonononononoyesno
          A2P025: Digital tracking for waste disposalnononoyesnonoyesno
          A2P025: Smart surveillancenononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnonoyesno
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononoyesno
          A2P026: e-Mobilitynononoyesnonoyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononoyesno
          A2P026: Car-free areanonononoyesnoyesno
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoYesYesYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEPC = 0, energy neutral buildingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingNational standards apply.
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.Carbon neutrality 2050The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Other
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Demand management Living Lab
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Affordability
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Digital twinning and visual 3D models,
          • District Energy plans
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Low Emission Zone
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          • Net zero carbon footprint
          • Energy Neutral,
          • Life Cycle approach
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          A3P009: OtherEnergy Positive, Low Emission Zone
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Regulatory sandbox
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.Onsite Energy Ratio > 1Functional PEDThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.PED-ACT project.Strategic, economicBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Borlänge city has committed to become the carbon-neutral city by 2030.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaRuralUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • New construction,
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Retrofitting Area
          • New Development,
          • Retrofitting Area
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction19861990
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000000.010658622423328
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnonoyesnoyes
          B1P013 - Residential: Specify the sqm [m²]508004360
          B1P013: Officenononononoyesnono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononoyesno
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononoyesnono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononoyes
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesyesnonoyesyesyes
          B1P014 - Residential: Specify the sqm [m²]2394508004360
          B1P014: Officenononononoyesyesno
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononononoyesno
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononoyesyesno
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononoyes
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life timePermanent installationCEDER will follow an integrative approach including technology for a permanent installation.
          B2P003: Scale of action
          B2P003: ScaleVirtualDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          • Academia,
          • Industrial
          B2P009: OtherEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          • Equipment
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          • Energy,
          • Environmental,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.CEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          • Energy modelling
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important4 - Important4 - Important4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P001: Decreasing costs of innovative materials4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important2 - Slightly important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important
          C1P001: Social acceptance (top-down)5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important4 - Important4 - Important
          C1P001: Availability of RES on site (Local RES)5 - Very important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important2 - Slightly important5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important2 - Slightly important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important2 - Slightly important4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipalityFragmented financial support; lack of experimental budget for complex projects, etc.
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
          C1P005: Non-effective regulations4 - Important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
          C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 13 - Moderately important2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important4 - Important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important2 - Slightly important3 - Moderately important
          C1P009: Lack of awareness among authorities1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P010: Economic crisis1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important5 - Very important
          C1P010: Risk and uncertainty5 - Very important4 - Important4 - Important2 - Slightly important4 - Important4 - Important5 - Very important
          C1P010: Lack of consolidated and tested business models1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important
          C1P011: Energy price distortion1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important2 - Slightly important4 - Important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Financial/Funding
          • None
          • None
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Construction/implementation
          • None
          C1P012: Business process management
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Urban Services providers
          • Planning/leading
          • Design/demand aggregation
          • None
          C1P012: Real Estate developers
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Design/demand aggregation
          • Design/demand aggregation
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation
          • Construction/implementation
          • None
          C1P012: End‐users/Occupants/Energy Citizens
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          • Design/demand aggregation
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • None
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • None
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)