Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Uncompare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Uncompare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Lund, Brunnshög district | Tampere, Ilokkaanpuisto district | Innsbruck, Campagne-Areal | Leon, Former Sugar Factory district | Ankara, Çamlık District | Borlänge, Rymdgatan’s Residential Portfolio |
---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Lund, Brunnshög district | Tampere, Ilokkaanpuisto district | Innsbruck, Campagne-Areal | Leon, Former Sugar Factory district | Ankara, Çamlık District | Borlänge, Rymdgatan’s Residential Portfolio |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
|
|
| ||
A1P003: Categorisation of the PED site | |||||||
PED case study | no | yes | no | no | yes | yes | no |
PED relevant case study | yes | no | yes | yes | no | yes | yes |
PED Lab. | no | no | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | |||||||
Climate neutrality | no | yes | yes | yes | no | yes | yes |
Annual energy surplus | no | yes | no | no | yes | yes | yes |
Energy community | yes | yes | yes | no | no | yes | yes |
Circularity | no | yes | no | no | no | no | no |
Air quality and urban comfort | yes | yes | no | no | no | no | no |
Electrification | yes | yes | yes | no | no | yes | yes |
Net-zero energy cost | no | no | no | no | no | yes | no |
Net-zero emission | no | yes | yes | yes | no | yes | no |
Self-sufficiency (energy autonomous) | no | no | yes | no | no | no | no |
Maximise self-sufficiency | no | no | no | no | yes | yes | yes |
Other | no | yes | no | no | no | no | no |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | ||||||
A1P005: Phase of the PED case study / PED Lab | |||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | In operation | Completed | Completed | Planning Phase | Planning Phase | Planning Phase |
A1P006: Start Date | |||||||
A1P006: Start date | 2015 | 04/14 | 04/16 | 12/18 | 10/22 | ||
A1P007: End Date | |||||||
A1P007: End date | 2040 | 10/23 | 04/22 | 12/23 | 09/25 | ||
A1P008: Reference Project | |||||||
A1P008: Reference Project | |||||||
A1P009: Data availability | |||||||
A1P009: Data availability |
|
|
|
| |||
A1P009: Other | GIS open dataset is under construction | ||||||
A1P010: Sources | |||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| ||||
A1P011: Geographic coordinates | |||||||
X Coordinate (longitude): | 23.814588 | 13.232469400769599 | 23.798083 | 11.424346738140256 | -5.584795 | 32.795369 | 15.394495 |
Y Coordinate (latitude): | 38.077349 | 55.71989792207193 | 61.464088 | 47.271470786729104 | 42.593391 | 39.881812 | 60.486609 |
A1P012: Country | |||||||
A1P012: Country | Greece | Sweden | Finland | Austria | Spain | Turkey | Sweden |
A1P013: City | |||||||
A1P013: City | Municipality of Kifissia | Lund | Tampere | Innsbruck | Leon | Ankara | Borlänge |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Dfb | Dfb | Dfb | Csb | Dsb | Dsb |
A1P015: District boundary | |||||||
A1P015: District boundary | Virtual | Geographic | Virtual | Geographic | Geographic | Geographic | Geographic |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | ||||||
A1P016: Ownership of the case study/PED Lab | |||||||
A1P016: Ownership of the case study/PED Lab: | Public | Mixed | Mixed | Mixed | Private | Mixed | |
A1P017: Ownership of the land / physical infrastructure | |||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | |
A1P018: Number of buildings in PED | |||||||
A1P018: Number of buildings in PED | 200 | 6 | 4 | 21 | 257 | 10 | |
A1P019: Conditioned space | |||||||
A1P019: Conditioned space [m²] | 1500000 | 9.000 | 22277 | 16.06900 | 22600 | 3700 | |
A1P020: Total ground area | |||||||
A1P020: Total ground area [m²] | 1500000 | 25.000 | 11351 | 73.14569 | 50800 | 9945 | |
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 1 | 0 | 2 | 0 | 0 | 0 |
A1P022: Financial schemes | |||||||
A1P022a: Financing - PRIVATE - Real estate | no | yes | yes | no | no | no | no |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | ||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||
A1P022c: Financing - PRIVATE - Other | no | no | yes | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | yes | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | ||||||
A1P022e: Financing - PUBLIC - National funding | no | yes | yes | no | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | yes | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | yes | no | no | no | no | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | ||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | yes | no | no | yes | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | yes | no | yes | no |
A1P022j: Add the value in EUR if available [EUR] | |||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||
A1P022: Other | |||||||
A1P023: Economic Targets | |||||||
A1P023: Economic Targets |
|
|
|
|
| ||
A1P023: Other | World class sustainable living and research environments | Create affordable appartments for the citizens | |||||
A1P024: More comments: | |||||||
A1P024: More comments: | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | |||||
A1P025: Estimated PED case study / PED LAB costs | |||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | |||||||
Contact person for general enquiries | |||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Markus Paulsson | Senior Scientist Terttu Vainio | Georgios Dermentzis | Begoña Gonzalo Orden | Prof. Dr. İpek Gürsel DİNO | Jingchun Shen |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | City of Lund | VTT Technical Research Centre of Finland | University of Innsbruck | Municipality of Leon | Middle East Technical University | Högskolan Dalarna |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Research Center / University | Other | Research Center / University | Research Center / University |
A1P028: Other | Municipality of Leon - ILRUV | ||||||
A1P029: Email | giavasoglou@kifissia.gr | markus.paulsson@lund.se | terttu.vainio@vtt.fi | Georgios.Dermentzis@uibk.ac.at | begona.gonzalo@aytoleon.es | ipekg@metu.edu.tr | jih@du.se |
Contact person for other special topics | |||||||
A1P030: Name | Stavros Zapantis - vice mayor | Eva Dalman | Monica Prada Corral | Assoc. Prof. Onur Taylan | Xingxing Zhang | ||
A1P031: Email | stavros.zapantis@gmail.com | eva.dalman@lund.se | Monica.Prada@ilruv.es | otaylan@metu.edu.tr | xza@du.se | ||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | |||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles; | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | |
A2P003: Application of ISO52000 | |||||||
A2P003: Application of ISO52000 | No | No | No | No | Yes | No | |
A2P004: Appliances included in the calculation of the energy balance | |||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | No | Yes | Yes | |
A2P005: Mobility included in the calculation of the energy balance | |||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | No | No | No | No | No | |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Mobility is not included in the calculations. | |||||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 25 | 0 | 0.39 | 3.49 | 3.446 | 0.6777 | |
A2P008: Annual energy demand in buildings / Electric Demand | |||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 30 | 0.7 | 0.655 | 0.57 | 0.528 | 0.03656 | |
A2P009: Annual energy demand for e-mobility | |||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | 0 | |||||
A2P010: Annual energy demand for urban infrastructure | |||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | ||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||
A2P011: PV | yes | yes | yes | yes | yes | yes | no |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.7 | 0.42 | 1.24 | 3.4240 | |||
A2P011: Wind | no | yes | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Hydro | no | no | no | no | yes | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | 1.28 | ||||||
A2P011: Biomass_el | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: PVT_el | no | no | no | no | yes | no | yes |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.28 | 0.01818 | |||||
A2P011: Other | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||
A2P012: Geothermal | no | no | yes | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Solar Thermal | no | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Waste heat+HP | no | yes | no | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: PVT_th | no | no | no | no | yes | no | yes |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | ||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Other | no | no | no | no | yes | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P013: Renewable resources on-site - Additional notes | |||||||
A2P013: Renewable resources on-site - Additional notes | PV plant of energy community locates outside of the city, not on the slot | ||||||
A2P014: Annual energy use | |||||||
A2P014: Annual energy use [GWh/annum] | 0.7 | 0.96 | 3.976 | 0.318 | |||
A2P015: Annual energy delivered | |||||||
A2P015: Annual energy delivered [GWh/annum] | -2 | 0.2055 | |||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | 0 | 0 | |||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||
A2P017: Gas | no | no | no | no | no | yes | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Coal | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Oil | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Other | no | no | no | no | no | no | yes |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | ||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||
A2P018: PV | no | yes | no | no | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Wind | no | yes | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Hydro | no | yes | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_el | no | yes | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: PVT_el | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Other | no | no | no | no | no | no | yes |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||
A2P019: Geothermal | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: PVT_th | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Other | no | no | no | no | no | no | yes |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | ||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 0.53839572192513 |
A2P021: GHG-balance calculated for the PED | |||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | 6.93 | |||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||
A2P022: Safety & Security | none | ||||||
A2P022: Health | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | thermal comfort diagram | |||||
A2P022: Education | none | ||||||
A2P022: Mobility | Maximum 1/3 transport with car | none | |||||
A2P022: Energy | Local energy production 150% of energy need | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | normalized CO2/GHG & Energy intensity | ||||
A2P022: Water | |||||||
A2P022: Economic development | cost of excess emissions | ||||||
A2P022: Housing and Community | 50% rental apartments and 50% owner apartments | ||||||
A2P022: Waste | |||||||
A2P022: Other | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||
A2P023: Photovoltaics | no | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | yes | no | no | yes | no | yes |
A2P023: Wind Turbines | no | yes | no | no | no | no | no |
A2P023: Geothermal energy system | no | yes | yes | no | no | no | yes |
A2P023: Waste heat recovery | no | yes | yes | no | no | no | yes |
A2P023: Waste to energy | no | no | no | no | no | no | no |
A2P023: Polygeneration | no | yes | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | no | no | no |
A2P023: Heat Pump | no | yes | yes | yes | yes | yes | yes |
A2P023: Hydrogen | no | yes | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | yes | no | no |
A2P023: Biomass | no | no | no | no | no | no | no |
A2P023: Biogas | no | no | no | no | no | no | no |
A2P023: Other | |||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | no | yes | no | yes |
A2P024: Energy management system | no | yes | yes | no | yes | no | no |
A2P024: Demand-side management | no | yes | yes | no | yes | no | no |
A2P024: Smart electricity grid | no | yes | no | no | no | no | no |
A2P024: Thermal Storage | no | yes | no | yes | no | no | yes |
A2P024: Electric Storage | no | yes | no | no | no | no | no |
A2P024: District Heating and Cooling | no | yes | no | yes | no | no | yes |
A2P024: Smart metering and demand-responsive control systems | no | yes | yes | no | no | no | no |
A2P024: P2P – buildings | no | no | no | yes | yes | no | no |
A2P024: Other | Electric grid as virtual battery | ||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||
A2P025: Deep Retrofitting | no | no | no | no | yes | yes | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | yes | no | no |
A2P025: High-performance new buildings | no | yes | yes | yes | no | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | yes | no | no | no | no | no |
A2P025: Urban data platforms | no | yes | no | no | yes | no | no |
A2P025: Mobile applications for citizens | no | no | yes | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | no | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | yes | no | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | no | no |
A2P025: Other | |||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | no | yes | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | yes | no | no | no | no | no |
A2P026: e-Mobility | no | yes | no | no | yes | no | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | no | yes | no | no |
A2P026: Car-free area | no | yes | no | no | no | no | no |
A2P026: Other | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P027: Mobility strategies - Additional notes | Walkability | ||||||
A2P028: Energy efficiency certificates | |||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | No | No | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | Miljöbyggnad silver/guld | Two buildings are certified "Passive House new build" | Energy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling) | |||
A2P029: Any other building / district certificates | |||||||
A2P029: Any other building / district certificates | No | No | No | No | No | No | |
A2P029: If yes, please specify and/or enter notes | |||||||
A3P001: Relevant city /national strategy | |||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | |||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | |||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| |||||
A3P003: Other | No gas grid in Brunnshög | District heating based mainly on heat pumps and renewable sources | |||||
A3P004: Identification of needs and priorities | |||||||
A3P004: Identification of needs and priorities | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | |||
A3P005: Sustainable behaviour | |||||||
A3P005: Sustainable behaviour | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | |||||
A3P006: Economic strategies | |||||||
A3P006: Economic strategies |
|
|
| ||||
A3P006: Other | Attractivenes | ||||||
A3P007: Social models | |||||||
A3P007: Social models |
|
|
|
|
|
| |
A3P007: Other | |||||||
A3P008: Integrated urban strategies | |||||||
A3P008: Integrated urban strategies |
|
|
|
|
| ||
A3P008: Other | |||||||
A3P009: Environmental strategies | |||||||
A3P009: Environmental strategies |
|
|
|
|
| ||
A3P009: Other | Energy Positive, Low Emission Zone | ||||||
A3P010: Legal / Regulatory aspects | |||||||
A3P010: Legal / Regulatory aspects | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | ||||||
B1P001: PED/PED relevant concept definition | |||||||
B1P001: PED/PED relevant concept definition | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | |||
B1P002: Motivation behind PED/PED relevant project development | |||||||
B1P002: Motivation behind PED/PED relevant project development | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | PED-ACT project. | Borlänge city has committed to become the carbon-neutral city by 2030. | |||
B1P003: Environment of the case study area | |||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Urban area | Urban area | Suburban area | Urban area | |
B1P004: Type of district | |||||||
B2P004: Type of district |
|
|
|
|
|
| |
B1P005: Case Study Context | |||||||
B1P005: Case Study Context |
|
|
|
|
|
| |
B1P006: Year of construction | |||||||
B1P006: Year of construction | 2022 | 1986 | 1990 | ||||
B1P007: District population before intervention - Residential | |||||||
B1P007: District population before intervention - Residential | 0 | 0 | 100 | ||||
B1P008: District population after intervention - Residential | |||||||
B1P008: District population after intervention - Residential | 18000 | 300 | 780 | 100 | |||
B1P009: District population before intervention - Non-residential | |||||||
B1P009: District population before intervention - Non-residential | 2000 | 6 | |||||
B1P010: District population after intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | 22000 | 6 | |||||
B1P011: Population density before intervention | |||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||
B1P012: Population density after intervention | 0 | 0.026666666666667 | 12 | 0.068716412650868 | 0 | 0 | 0.010658622423328 |
B1P013: Building and Land Use before intervention | |||||||
B1P013: Residential | no | no | no | no | yes | yes | yes |
B1P013 - Residential: Specify the sqm [m²] | 50800 | 4360 | |||||
B1P013: Office | no | yes | no | no | no | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | ||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P013: Commercial | no | no | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||||
B1P013: Institutional | no | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||
B1P013: Natural areas | no | yes | yes | no | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | ||||||
B1P013: Recreational | no | no | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P013: Other | no | yes | no | no | yes | no | yes |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | 706 | |||||
B1P014: Building and Land Use after intervention | |||||||
B1P014: Residential | no | yes | yes | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 600000 | 50800 | 4360 | ||||
B1P014: Office | no | yes | no | no | no | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | ||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P014: Commercial | no | no | no | yes | no | no | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||||
B1P014: Institutional | no | yes | no | yes | no | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | ||||||
B1P014: Natural areas | no | no | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||
B1P014: Recreational | no | yes | no | yes | no | no | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | ||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P014: Other | no | no | no | no | yes | no | yes |
B1P014 - Other: Specify the sqm [m²] | 706 | ||||||
B2P001: PED Lab concept definition | |||||||
B2P001: PED Lab concept definition | |||||||
B2P002: Installation life time | |||||||
B2P002: Installation life time | |||||||
B2P003: Scale of action | |||||||
B2P003: Scale | |||||||
B2P004: Operator of the installation | |||||||
B2P004: Operator of the installation | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P006: Circular Economy Approach | |||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | |||||||
B2P006: Other | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Other | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Other | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Other | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Other | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P014: Monitoring measures | |||||||
B2P014: Monitoring measures | |||||||
B2P015: Key Performance indicators | |||||||
B2P015: Key Performance indicators | |||||||
B2P016: Execution of operations | |||||||
B2P016: Execution of operations | |||||||
B2P017: Capacities | |||||||
B2P017: Capacities | |||||||
B2P018: Relations with stakeholders | |||||||
B2P018: Relations with stakeholders | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools | |||||||
B2P020: External accessibility | |||||||
B2P020: External accessibility | |||||||
C1P001: Unlocking Factors | |||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 5 - Very important |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P001: Storage systems and E-mobility market penetration | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P001: Decreasing costs of innovative materials | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P001: The ability to predict Multiple Benefits | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 5 - Very important |
C1P001: Social acceptance (top-down) | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Availability of RES on site (Local RES) | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | |||||||
C1P002: Driving Factors | |||||||
C1P002: Climate Change adaptation need | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P002: Energy autonomy/independence | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | |||||||
C1P003: Administrative barriers | |||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 5 - Very important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P003: Lack of public participation | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | |||||||
C1P004: Policy barriers | |||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | |||||||
C1P005: Legal and Regulatory barriers | |||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P005: Regulatory instability | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P005: Shortage of proven and tested solutions and examples | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | laws favouring big energy companies | ||||||
C1P006: Environmental barriers | |||||||
C1P006: Environmental barriers | ? | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | 2 - Slightly important | |||
C1P007: Technical barriers | |||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Deficient planning | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P007: Lack of well-defined process | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P007: Grid congestion, grid instability | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | |||||||
C1P008: Social and Cultural barriers | |||||||
C1P008: Inertia | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P008: Lack of trust beyond social network | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P008: Rebound effect | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | |||||||
C1P009: Information and Awareness barriers | |||||||
C1P009: Insufficient information on the part of potential users and consumers | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | |
C1P009: Lack of awareness among authorities | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||
C1P010: Financial barriers | |||||||
C1P010: Hidden costs | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P010: Insufficient external financial support and funding for project activities | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P010: Economic crisis | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P010: Risk and uncertainty | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P010: Limited access to capital and cost disincentives | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | |||||||
C1P011: Market barriers | |||||||
C1P011: Split incentives | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | |
C1P011: Energy price distortion | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | |||||||
C1P012: Stakeholders involved | |||||||
C1P012: Government/Public Authorities |
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
| |||
C1P012: Financial/Funding |
|
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
|
| |||
C1P012: Business process management |
|
|
| ||||
C1P012: Urban Services providers |
|
|
|
| |||
C1P012: Real Estate developers |
|
|
|
| |||
C1P012: Design/Construction companies |
|
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
|
| |||
C1P012: Other | |||||||
C1P012: Other (if any) | |||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)