Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Uncompare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleLund, Cityfied (demo Linero)
Barcelona, SEILAB & Energy SmartLab
Tampere, Ilokkaanpuisto district
Riga, Ķīpsala, RTU smart student city
Savona, The University of Genova, Savona Campus
Kifissia, Energy community
Tiurberget, Kongsvinger
Vantaa, Aviapolis
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabLund, Cityfied (demo Linero)Barcelona, SEILAB & Energy SmartLabTampere, Ilokkaanpuisto districtRiga, Ķīpsala, RTU smart student citySavona, The University of Genova, Savona CampusKifissia, Energy communityTiurberget, KongsvingerVantaa, Aviapolis
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnononoyes
PED relevant case studyyesnoyesnonoyesyesyes
PED Lab.noyesnonoyesnonoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesnoyesyes
Annual energy surplusnonononononoyesno
Energy communitynoyesyesyesyesyesyesno
Circularitynononononononoyes
Air quality and urban comfortnononononoyesnono
Electrificationnoyesyesnonoyesnono
Net-zero energy costnononononononono
Net-zero emissionyesyesyesnonononono
Self-sufficiency (energy autonomous)noyesyesyesnononono
Maximise self-sufficiencynononoyesnononono
Otheryesyesnonoyesnonono
Other (A1P004)Social aspects/affordabilityGreen ITThe case study can be representative as a small-scale district with multi-vector energy systems
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedIn operationCompletedPlanning PhaseIn operationPlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1401/201104/1401/2402/1401/2401/23
A1P007: End Date
A1P007: End date12/1902/201310/2312/2612/2612/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):13.2433752.123.79808324.081683398.45236071159282623.81458812.03202324.958821
      Y Coordinate (latitude):55.69922341.361.46408856.9524595644.2990045129586138.07734960.18203560.305488
      A1P012: Country
      A1P012: CountrySwedenSpainFinlandLatviaItalyGreeceNorwayFinland
      A1P013: City
      A1P013: CityLundBarcelona and TarragonaTampereRigaSavonaMunicipality of KifissiaKongsvingerVantaa
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfbCsaDfbCfbCsaCsaDfdDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualVirtualGeographicGeographicVirtualGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPublicMixedMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED0615
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]9.000170000
      A1P020: Total ground area
      A1P020: Total ground area [m²]8000025.000119264600003881000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00010000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonoyesnononoyesyes
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonoyesnonononoyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonoyesnoyesnonono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononononononoyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Otheryesnonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnonoyesyes
      A1P022i: Add the value in EUR if available [EUR]7500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Otheryesnonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5.4
      Contact person for general enquiries
      A1P026: NameChristoph GollnerDr. Jaume Salom, Dra. Cristina CorcheroSenior Scientist Terttu VainioJudith StiekemaMichela RobbaArtemis Giavasoglou, Kleopatra KalampokaJohan KaskEira Linko
      A1P027: OrganizationFFGIRECVTT Technical Research Centre of FinlandOASCUniversity of GenovaMunicipality of Kifissia – SPARCS local teamCREDS—Center for Research on Digitalization and Sustainability, University of Inland NorwayCity of Vantaa
      A1P028: AffiliationOtherResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public Bodies
      A1P028: Othernot for profit private organisation
      A1P029: Emailchristoph.gollner@ffg.atJsalom@irec.catterttu.vainio@vtt.fijudith@oascities.orgMichela.robba@unige.itgiavasoglou@kifissia.grjohan.kask@inn.noeira.linko@vantaa.fi
      Contact person for other special topics
      A1P030: NameYassine EnnassiriStavros Zapantis - vice mayor
      A1P031: EmailYassine.ennassiri@edu.unige.itstavros.zapantis@gmail.com
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials,
      • Other
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]080001.426
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.750000.962
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesnonoyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.7
      A2P011: Windnononoyesnononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononoyesnononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonoyesnonononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononoyesnononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononononoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesPV plant of energy community locates outside of the city, not on the slotConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.7
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnoyesnononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononononoyes
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononononononoyes
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononononoyes
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononononoyes
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononononoyes
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononononoyes
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]0
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Health
      A2P022: Education
      A2P022: MobilityYes
      A2P022: EnergyCost of energy; emissions linked to energy productionYes
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesnoyesnoyesyes
      A2P023: Solar thermal collectorsyesnononoyesnoyesno
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnonoyesnoyesnoyesyes
      A2P023: Waste heat recoverynonoyesnononoyesyes
      A2P023: Waste to energynononononononoyes
      A2P023: Polygenerationnonononoyesnonoyes
      A2P023: Co-generationnononononononono
      A2P023: Heat Pumpyesnoyesnononoyesyes
      A2P023: Hydrogennonononoyesnonono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnononononononoyes
      A2P023: Biogasnononononononono
      A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesnonoyes
      A2P024: Energy management systemnoyesyesyesyesnonoyes
      A2P024: Demand-side managementnonoyesyesnonoyesyes
      A2P024: Smart electricity gridnoyesnoyesyesnoyesyes
      A2P024: Thermal Storagenononoyesyesnoyesyes
      A2P024: Electric Storagenoyesnoyesyesnoyesyes
      A2P024: District Heating and Coolingyesnonoyesyesnoyesyes
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnoyesyes
      A2P024: P2P – buildingsnonononononoyesno
      A2P024: OtherElectric grid as virtual batteryThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnononononoyesno
      A2P025: Energy efficiency measures in historic buildingsnononononononono
      A2P025: High-performance new buildingsnonoyesnoyesnonoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononononononono
      A2P025: Urban data platformsnononoyesnononono
      A2P025: Mobile applications for citizensnonoyesyesnononono
      A2P025: Building services (HVAC & Lighting)noyesyesyesnononoyes
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnononononononono
      A2P025: Smart surveillancenononononononono
      A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesnononononoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononononoyes
      A2P026: e-Mobilitynonononoyesnonoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnononononononoyes
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Smart cities strategies
      • Smart cities strategies,
      • New development strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Demand management Living Lab
      • Open data business models,
      • Circular economy models
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Demand management Living Lab
      • Innovative business models,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Quality of Life,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      • Digital twinning and visual 3D models
      • District Energy plans
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050
      • Strategic urban planning,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint,
      • Greening strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • New Development
      • Re-use / Transformation Area,
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential300
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00120000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnonononononoyes
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononononononoyes
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononononoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononononononoyes
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononoyes
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonoyesnonononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononononoyes
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononoyes
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesnonononoyes
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenononononononoyes
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononoyes
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononononononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononononoyes
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononononononoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic,
      • Private
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
      C1P001: Decreasing costs of innovative materials1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P001: Availability of RES on site (Local RES)1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant4 - Important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P002: Urban re-development of existing built environment1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P002: Economic growth need1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
      C1P002: Energy autonomy/independence1 - Unimportant5 - Very important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
      C1P005: Regulatory instability1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
      C1P005: Non-effective regulations1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P005: Insufficient or insecure financial incentives1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P007: Deficient planning1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Lack of awareness among authorities1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P010: Economic crisis1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P010: Risk and uncertainty1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading
      • Planning/leading
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Business process management
      • Planning/leading,
      • Construction/implementation
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • None
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)