Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Uncompare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Uncompare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleCityfied (demo Linero), Lund
Kifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Santa Chiara Open Lab, Trento
STARDUST, Trento
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabCityfied (demo Linero), LundKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioSanta Chiara Open Lab, TrentoSTARDUST, Trento
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesno
PED relevant case studyyesyesyesnoyes
PED Lab.nonononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyes
Annual energy surplusnonoyesnono
Energy communitynoyesyesnono
Circularitynonononono
Air quality and urban comfortnoyesnonono
Electrificationnoyesyesnono
Net-zero energy costnonononono
Net-zero emissionyesnononono
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencynonoyesnono
Otheryesnonoyesyes
Other (A1P004)Social aspects/affordabilityenergy efficientEnergy neutral; Energy efficient; Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedPlanning PhasePlanning PhaseIn operationCompleted
A1P006: Start Date
A1P006: Start date01/1412/1710/17
A1P007: End Date
A1P007: End date12/1903/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      A1P011: Geographic coordinates
      X Coordinate (longitude):13.24337523.81458815.39449511.12663311.134148
      Y Coordinate (latitude):55.69922338.07734960.48660946.06368546.041160
      A1P012: Country
      A1P012: CountrySwedenGreeceSwedenItalyItaly
      A1P013: City
      A1P013: CityLundMunicipality of KifissiaBorlängeTrentoTrento
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfbCsaDsbCfaCfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED10
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]3700
      A1P020: Total ground area
      A1P020: Total ground area [m²]800009945
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesno
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononoyes
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononoyesno
      A1P022e: Add the value in EUR if available [EUR]41000000
      A1P022f: Financing - PUBLIC - Regional fundingnonononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Otheryesnononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonononono
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Otheryesnonoyesyes
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherGreen financing
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameChristoph GollnerArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenChristoph GollnerChristoph Gollner
      A1P027: OrganizationFFGMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaFFGFFG
      A1P028: AffiliationOtherMunicipality / Public BodiesResearch Center / UniversityOtherOther
      A1P028: Other
      A1P029: Emailchristoph.gollner@ffg.atgiavasoglou@kifissia.grjih@du.sechristoph.gollner@ffg.atchristoph.gollner@ffg.at
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorXingxing Zhang
      A1P031: Emailstavros.zapantis@gmail.comxza@du.se
      Pursuant to the General Data Protection RegulationYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy production
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000No
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.6777
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.03656
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesnonono
      A2P011: PV - specify production in GWh/annum [GWh/annum]
      A2P011: Windnonononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonoyesnono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonoyesnono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.318
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.2055
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonoyesnono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonoyesnono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonoyesnono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000.5383957219251300
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securitynone
      A2P022: Healththermal comfort diagram
      A2P022: Educationnone
      A2P022: Mobilitynone
      A2P022: Energynormalized CO2/GHG & Energy intensity
      A2P022: Water
      A2P022: Economic developmentcost of excess emissions
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesnoyesyesyes
      A2P023: Solar thermal collectorsyesnoyesyesyes
      A2P023: Wind Turbinesnonononono
      A2P023: Geothermal energy systemnonoyesyesyes
      A2P023: Waste heat recoverynonoyesyesyes
      A2P023: Waste to energynonononono
      A2P023: Polygenerationnonononono
      A2P023: Co-generationnonononono
      A2P023: Heat Pumpyesnoyesyesyes
      A2P023: Hydrogennonononono
      A2P023: Hydropower plantnonononono
      A2P023: Biomassnonononono
      A2P023: Biogasnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnoyes
      A2P024: Energy management systemnonononono
      A2P024: Demand-side managementnonononono
      A2P024: Smart electricity gridnonononoyes
      A2P024: Thermal Storagenonoyesyesno
      A2P024: Electric Storagenonononono
      A2P024: District Heating and Coolingyesnoyesyesyes
      A2P024: Smart metering and demand-responsive control systemsnonononoyes
      A2P024: P2P – buildingsnonononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnoyesnono
      A2P025: Energy efficiency measures in historic buildingsnonononono
      A2P025: High-performance new buildingsnonononono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyes
      A2P025: Urban data platformsnonononono
      A2P025: Mobile applications for citizensnonononono
      A2P025: Building services (HVAC & Lighting)nonoyesnono
      A2P025: Smart irrigationnonononono
      A2P025: Digital tracking for waste disposalnonononono
      A2P025: Smart surveillancenonononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonononoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononono
      A2P026: e-Mobilitynonononoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononono
      A2P026: Car-free areanonononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Smart cities strategies
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Innovative business models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Co-creation / Citizen engagement strategies
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral
      • Energy Neutral
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential100
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential100
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000.01065862242332800
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnoyesnoyes
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officenonononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonoyesnono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesyesyes
      B1P014 - Residential: Specify the sqm [m²]4360
      B1P014: Officenononoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononoyesyes
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonoyesnono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED Lab
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Decreasing costs of innovative materials1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Social acceptance (top-down)1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P002: Economic growth need1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Territorial and market attractiveness1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Energy autonomy/independence1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Fragmented and or complex ownership structure1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Regulatory instability1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Non-effective regulations1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Deficient planning1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Lack of awareness among authorities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P011: Energy price distortion1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading
      C1P012: Financial/Funding
      • None
      C1P012: Analyst, ICT and Big Data
      • None
      C1P012: Business process management
      • None
      C1P012: Urban Services providers
      • None
      C1P012: Real Estate developers
      • Design/demand aggregation
      C1P012: Design/Construction companies
      • None
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • None
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)