Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Uncompare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Vantaa, Aviapolis
Vidin, Himik and Bononia
Lublin
Firenze, Novoli-Cascine district, REPLICATE
Ankara, Çamlık District
Bologna, Pilastro-Roveri district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatVantaa, AviapolisVidin, Himik and BononiaLublinFirenze, Novoli-Cascine district, REPLICATEAnkara, Çamlık DistrictBologna, Pilastro-Roveri district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnoyesno
PED relevant case studyyesyesnonoyesyesyes
PED Lab.noyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusyesnoyesyesnoyesno
Energy communitynononoyesnoyesyes
Circularitynoyesnoyesnonono
Air quality and urban comfortnononoyesnonono
Electrificationyesnonononoyesno
Net-zero energy costnononoyesnoyesno
Net-zero emissionnononoyesnoyesno
Self-sufficiency (energy autonomous)nononoyesnonono
Maximise self-sufficiencynononoyesnoyesno
Othernonononoyesnono
Other (A1P004)Social aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationPlanning PhasePlanning PhasePlanning PhaseCompletedPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/1701/2312/1801/1710/2209/19
A1P007: End Date
A1P007: End date05/2312/2712/3012/2109/2510/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
    • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
    • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
    • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
    A1P011: Geographic coordinates
    X Coordinate (longitude):5.619124.95882122.882622.568411.23053932.79536911.397323
    Y Coordinate (latitude):51.660660.30548843.993651.246543.79271139.88181244.507106
    A1P012: Country
    A1P012: CountryNetherlandsFinlandBulgariaPolandItalyTurkeyItaly
    A1P013: City
    A1P013: CityUdenVantaaVidinLublinFirenzeAnkaraBologna
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfbDfbCfaCfbCfaDsbCfa
    A1P015: District boundary
    A1P015: District boundaryGeographicGeographicGeographicGeographicGeographicGeographic
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPrivateMixedPrivateMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED17452571962
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]236098759.5321664.7322600
    A1P020: Total ground area
    A1P020: Total ground area [m²]38603881000195234.8072833.47508007800000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area1010000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesnonononono
    A1P022a: Add the value in EUR if available [EUR]7804440
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernoyesnonononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesnono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnonoyesnoyesnoyes
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnonononononoyes
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyesnoyes
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesnononoyesyes
    A1P022i: Add the value in EUR if available [EUR]
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononoyes
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    A1P023: Other
    A1P024: More comments:
    A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
    Contact person for general enquiries
    A1P026: NameTonje Healey TrulsrudEira LinkoDaniela KostovaDorota Wolińska-PietrzakChristoph GollnerProf. Dr. İpek Gürsel DİNOProf. Danila Longo
    A1P027: OrganizationNorwegian University of Science and Technology (NTNU)City of VantaaGreen Synergy ClusterLublin MunicipalityFFGMiddle East Technical UniversityUniversity of Bologna - Architecture Department
    A1P028: AffiliationResearch Center / UniversityMunicipality / Public BodiesOtherMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / University
    A1P028: OtherCluster
    A1P029: Emailtonje.h.trulsrud@ntnu.noeira.linko@vantaa.fidaniela@greensynergycluster.eudwolinska@lublin.euchristoph.gollner@ffg.atipekg@metu.edu.tr
    Contact person for other special topics
    A1P030: NameAssoc. Prof. Onur Taylan
    A1P031: Emailotaylan@metu.edu.tr
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000YesNoNoNoYesYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationnot includedThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1483.446
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.528
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnononoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.0583.4240
    A2P011: Windnonononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesyesnonononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnonononononoyes
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonononononoyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesnonononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.1943.976
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.0368
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononoyesno
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesnonononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnoyesnonononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesnonononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnoyesnonononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnoyesnonononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnoyesnonononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecurityPersonal Safety
    A2P022: HealthHealthy community
    A2P022: Education
    A2P022: MobilitySustainable mobility
    A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
    A2P022: Water
    A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
    A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
    A2P022: Waste
    A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnonononoyesnoyes
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemyesyesyesnononoyes
    A2P023: Waste heat recoverynoyesnonononono
    A2P023: Waste to energynoyesnonononoyes
    A2P023: Polygenerationnoyesnonononono
    A2P023: Co-generationnonononononoyes
    A2P023: Heat Pumpyesyesyesyesyesyesyes
    A2P023: Hydrogennononoyesnonono
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassnoyesnonononono
    A2P023: Biogasnonononononono
    A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesnoyes
    A2P024: Energy management systemyesyesnoyesnonono
    A2P024: Demand-side managementyesyesnoyesnonono
    A2P024: Smart electricity gridnoyesnoyesyesnono
    A2P024: Thermal Storagenoyesnoyesnonono
    A2P024: Electric Storagenoyesyesyesnonoyes
    A2P024: District Heating and Coolingnoyesnoyesnonoyes
    A2P024: Smart metering and demand-responsive control systemsyesyesnoyesyesnono
    A2P024: P2P – buildingsnonononononono
    A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnonoyesyesyesyesyes
    A2P025: Energy efficiency measures in historic buildingsnononoyesnonono
    A2P025: High-performance new buildingsyesyesnoyesnonoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnoyes
    A2P025: Urban data platformsnononoyesnonono
    A2P025: Mobile applications for citizensnononoyesyesnoyes
    A2P025: Building services (HVAC & Lighting)yesyesnoyesnoyesyes
    A2P025: Smart irrigationnonononononono
    A2P025: Digital tracking for waste disposalnonononononoyes
    A2P025: Smart surveillancenonononononoyes
    A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnonoyes
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesnonoyes
    A2P026: e-Mobilitynoyesnoyesyesnoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonononoyes
    A2P026: Car-free areanonononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoNoYes
    A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingEnergy Performance Certificate for each dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    A3P003: OtherHeating Grid
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourBologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • PPP models,
    • Circular economy models,
    • Demand management Living Lab,
    • Existing incentives
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Quality of Life
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Prevention of energy poverty
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • SECAP Updates
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • City Vision 2050,
    • SECAP Updates
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Pollutants Reduction,
    • Greening strategies
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies
    A3P009: OtherEnergy Positive, Low Emission Zone
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.PED-ACT project.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • New construction,
    • Renovation
    • Renovation
    • Renovation
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • New Development
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • Retrofitting Area
    • Retrofitting Area
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction1986
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0000000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesyesnoyesyesyes
    B1P013 - Residential: Specify the sqm [m²]64 787,572020050800
    B1P013: Officenoyesnonononoyes
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynoyesnonononoyes
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnoyesyesnononoyes
    B1P013 - Commercial: Specify the sqm [m²]262,33
    B1P013: Institutionalnoyesnonononoyes
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonononononoyes
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnoyesnonononoyes
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnoyesnonononoyes
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesnonoyesyesyes
    B1P014 - Residential: Specify the sqm [m²]23942020050800
    B1P014: Officenoyesnonononoyes
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynoyesnonononoyes
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnoyesnonononoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesyesnononoyes
    B1P014 - Institutional: Specify the sqm [m²]35322.21
    B1P014: Natural areasnonononononoyes
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesnonononoyes
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononoyes
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Efficiency measures,
    • Waste management,
    • Water treatment,
    • Lighting,
    • E-mobility,
    • Green areas,
    • Circular economy models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Environmental,
    • Social,
    • Economical / Financial
    • Energy
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Decreasing costs of innovative materials4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
    C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P002: Urban re-development of existing built environment4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P002: Economic growth need1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P002: Energy autonomy/independence1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: Lack of public participation1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: Complicated and non-comprehensive public procurement1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P005: Regulatory instability1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Non-effective regulations1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P007: Deficient planning1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
    C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Difficult definition of system boundaries1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Economic crisis1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P010: Risk and uncertainty5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
    C1P010: Limited access to capital and cost disincentives1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P011: Energy price distortion1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • None
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation
    • None
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • None
    • None
    • None
    C1P012: Urban Services providers
    • None
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Real Estate developers
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • None
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Design/demand aggregation
    • None
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)