Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Uncompare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Halmstad, Fyllinge
Leipzig, Baumwollspinnerei district
Schönbühel-Aggsbach, Schönbühel an der Donau
Lublin
STARDUST, Trento
Ydalir project, Elverum
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatHalmstad, FyllingeLeipzig, Baumwollspinnerei districtSchönbühel-Aggsbach, Schönbühel an der DonauLublinSTARDUST, TrentoYdalir project, ElverumIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnoyesnoyesyes
PED relevant case studyyesyesnoyesnoyesnono
PED Lab.nononononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyes
Annual energy surplusyesnononoyesnonoyes
Energy communitynoyesnoyesyesnonono
Circularitynonononoyesnonono
Air quality and urban comfortnonoyesnoyesnonoyes
Electrificationyesnoyesnonononono
Net-zero energy costnononoyesyesnonoyes
Net-zero emissionnonononoyesnoyesno
Self-sufficiency (energy autonomous)nonononoyesnonono
Maximise self-sufficiencynononoyesyesnonoyes
Othernonoyesnonoyesyesno
Other (A1P004)Net-zero emission; Annual energy surplusEnergy neutral; Energy efficient; Sustainable neighbourhoodEnergy efficient; Sustainable neighbourhood; Energy neutral
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationPlanning PhaseImplementation PhaseImplementation PhasePlanning PhaseCompletedIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date06/1701/2110/1701/1610/22
A1P007: End Date
A1P007: End date05/2301/3003/2410/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):5.619112.9205412.31845815.396922.568411.13414811.58020427.110049
        Y Coordinate (latitude):51.660656.6519451.32649248.275251.246546.04116060.89187838.496054
        A1P012: Country
        A1P012: CountryNetherlandsSwedenGermanyAustriaPolandItalyNorwayTurkey
        A1P013: City
        A1P013: CityUdenHalmstadLeipzigSchönbühel an der DonauLublinTrentoElverumİzmir
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfbDwbDfbDfbCfbCfbDfbCsa
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicFunctionalGeographicGeographicGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedPrivatePrivateMixedPublicPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED125020521
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]23601700047721664.73102795
        A1P020: Total ground area
        A1P020: Total ground area [m²]386030000245072833.4743000032600
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area10100003
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesyesnoyesnononono
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononoyesnononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesnononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnononononoyes
        A1P022i: Add the value in EUR if available [EUR]1193355
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononoyesnono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherGreen financing
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local and sustainable production
        A1P023: OtherSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
        Contact person for general enquiries
        A1P026: NameTonje Healey TrulsrudMarkus OlofsgårdSimon BaumGhazal EtminanDorota Wolińska-PietrzakChristoph GollnerChristoph GollnerOzlem Senyol
        A1P027: OrganizationNorwegian University of Science and Technology (NTNU)AFRYCENERO Energy GmbHGhazal.Etminan@ait.ac.atLublin MunicipalityFFGFFGKarsiyaka Municipality
        A1P028: AffiliationResearch Center / UniversityOtherOtherResearch Center / UniversityMunicipality / Public BodiesOtherOtherMunicipality / Public Bodies
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailtonje.h.trulsrud@ntnu.nomarkus.olofsgard@afry.comsib@cenero.deGhazal.Etminan@ait.ac.atdwolinska@lublin.euchristoph.gollner@ffg.atchristoph.gollner@ffg.atozlemkocaer2@gmail.com
        Contact person for other special topics
        A1P030: NameSimon BaumHasan Burak Cavka
        A1P031: Emailsib@cenero.dehasancavka@iyte.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.)
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialslink based regulation of electricity gridEnergy modelingSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationnot includedMobility is not included in the calculations.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1481.650.0663.862
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.0121.226
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesyesnononoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.028
        A2P011: Windnononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesyesnononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.1942.4210.0795.088
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.03680.0011
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononoyes
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnononoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
        A2P018: Windnononoyesnononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononoyesnononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesnononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononoyesnononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00000001.4540311173975
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000434
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthHealthy community
        A2P022: Education
        A2P022: MobilitySustainable mobilityMode of transport; Access to public transport
        A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionapplyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
        A2P022: Water
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and Communitydemographic composition, diverse community, social cohesionSpecify the associated KPIsDelivery and proximity to amenities
        A2P022: Waste
        A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)GHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesnoyesyesyesnoyes
        A2P023: Solar thermal collectorsnononononoyesyesno
        A2P023: Wind Turbinesnononononononono
        A2P023: Geothermal energy systemyesnonononoyesnono
        A2P023: Waste heat recoverynononononoyesnono
        A2P023: Waste to energynononononononono
        A2P023: Polygenerationnononononononono
        A2P023: Co-generationnononononononono
        A2P023: Heat Pumpyesnonoyesyesyesnoyes
        A2P023: Hydrogennonononoyesnonono
        A2P023: Hydropower plantnononononononono
        A2P023: Biomassnononononononono
        A2P023: Biogasnononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnonoyesyesnono
        A2P024: Energy management systemyesnonoyesyesnonono
        A2P024: Demand-side managementyesyesnonoyesnonono
        A2P024: Smart electricity gridnoyesnonoyesyesnono
        A2P024: Thermal Storagenonononoyesnonono
        A2P024: Electric Storagenonononoyesnonono
        A2P024: District Heating and Coolingnonononoyesyesyesno
        A2P024: Smart metering and demand-responsive control systemsyesyesnonoyesyesnono
        A2P024: P2P – buildingsnononoyesnononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnononoyesyesnonono
        A2P025: High-performance new buildingsyesnononoyesnonono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesyesnono
        A2P025: Urban data platformsnonononoyesnonono
        A2P025: Mobile applications for citizensnonononoyesnonono
        A2P025: Building services (HVAC & Lighting)yesnononoyesnonoyes
        A2P025: Smart irrigationnononononononono
        A2P025: Digital tracking for waste disposalnononononononono
        A2P025: Smart surveillancenononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonononoyesyesnono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnoyesno
        A2P026: e-Mobilitynonononoyesyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnononononononono
        A2P026: Car-free areanononononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYesNoNo
        A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral building
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Promotion of energy communities (REC/CEC)
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherHeating Grid
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Local trading
        • Innovative business models,
        • Other
        • Local trading,
        • Existing incentives
        • Innovative business models
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning
        • City Vision 2050,
        • SECAP Updates
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Carbon-free
        • Other
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaSuburban areaRurbanSuburban areaSuburban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction
        • Renovation
        • Renovation
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • New Development
        • Preservation Area
        • Retrofitting Area,
        • Preservation Area
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2005
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnoyesnoyes
        B1P013 - Residential: Specify the sqm [m²]102795
        B1P013: Officenononoyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononoyesnono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnoyesnononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesnonoyesnoyesyesyes
        B1P014 - Residential: Specify the sqm [m²]2394100000102795
        B1P014: Officenononoyesnononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononoyesnono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononoyesno
        B1P014 - Institutional: Specify the sqm [m²]2000
        B1P014: Natural areasnononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Efficiency measures,
        • Waste management,
        • Water treatment,
        • Lighting,
        • E-mobility,
        • Green areas,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Regulatory instability1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Non-effective regulations1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Deficient planning1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Rebound effect1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Risk and uncertainty5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Design/demand aggregation
        C1P012: Financial/Funding
        • Planning/leading
        • None
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading
        • None
        C1P012: Business process management
        • Design/demand aggregation
        • Planning/leading
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation
        • Planning/leading
        • None
        C1P012: Real Estate developers
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading
        • None
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        • Construction/implementation
        • None
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Design/demand aggregation
        • None
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)