Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Uncompare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Kaiserslautern, EnStadt:Pfaff
Istanbul, Ozyegin University Campus
Ankara, Çamlık District
City of Espoo, Espoonlahti district, Lippulaiva block
Espoo, Leppävaara district, Sello center
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraKaiserslautern, EnStadt:PfaffIstanbul, Ozyegin University CampusAnkara, Çamlık DistrictCity of Espoo, Espoonlahti district, Lippulaiva blockEspoo, Leppävaara district, Sello center
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnonoyesyesyes
PED relevant case studyyesyesyesyesnono
PED Lab.noyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyes
Annual energy surplusnononoyesnono
Energy communitynononoyesnono
Circularityyesnonononono
Air quality and urban comfortnonoyesnonono
Electrificationnonoyesyesnono
Net-zero energy costnononoyesnono
Net-zero emissionnononoyesnono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynononoyesyesyes
Othernonoyesnonono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhasePlanning PhaseIn operationImplementation Phase
A1P006: Start Date
A1P006: Start date01/1510/1710/2410/2206/1809/19
A1P007: End Date
A1P007: End date12/3510/2809/2503/2210/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
    A1P011: Geographic coordinates
    X Coordinate (longitude):24.753777787.75168429.25830032.79536924.654324.8101
    Y Coordinate (latitude):60.2162222249.43606241.03060039.88181260.149160.2179
    A1P012: Country
    A1P012: CountryFinlandGermanyTurkeyTurkeyFinlandFinland
    A1P013: City
    A1P013: CityEspooKaiserslauternIstanbulAnkaraEspooEspoo
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbCfbCfaDsbDfbDfb
    A1P015: District boundary
    A1P015: District boundaryGeographicGeographicGeographicGeographicGeographic
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedPublicPrivatePrivatePrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1525795
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]22600112000267956
    A1P020: Total ground area
    A1P020: Total ground area [m²]580000285.4005080016500053000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area000015
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnononononono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyes
    A1P022i: Add the value in EUR if available [EUR]308875629000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernoyesnononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the case.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    A1P023: OtherCircular economy
    A1P024: More comments:
    A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
    Contact person for general enquiries
    A1P026: NameJoni MäkinenChristoph GollnerCem KeskinProf. Dr. İpek Gürsel DİNOElina EkelundJaano Juhmen
    A1P027: OrganizationCity of EspooFFGCenter for Energy, Environment and Economy, Ozyegin UniversityMiddle East Technical UniversityCitycon OyjSIEMENS - Data Center Forum
    A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversitySME / IndustrySME / Industry
    A1P028: Other
    A1P029: Emailjoni.makinen@espoo.fichristoph.gollner@ffg.atcem.keskin@ozyegin.edu.tripekg@metu.edu.trElina.ekelund@citycon.comJaano.juhmen@siemens.com
    Contact person for other special topics
    A1P030: NameM. Pınar MengüçAssoc. Prof. Onur TaylanElina Ekelund
    A1P031: Emailpinar.menguc@ozyegin.edu.trotaylan@metu.edu.trElina.ekelund@citycon.com
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Construction materials
    • Energy efficiency,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesYesYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesMobility is not included in the calculations.Mobility is not included in the energy model.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.53.4465.5
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.5285.8
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnoyesyesyesno
    A2P011: PV - specify production in GWh/annum [GWh/annum]43.42400.54
    A2P011: Windnononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonononoyesno
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalnononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPyesnonononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]78.83.53.97611.3
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]15.45.76
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononoyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnonono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
    A2P018: Windnononononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononoyesno
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary00001.05323193916350
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Health
    A2P022: Education
    A2P022: Mobility
    A2P022: EnergyOn-site energy ratio
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and Community
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesno
    A2P023: Solar thermal collectorsnononononono
    A2P023: Wind Turbinesnonoyesnonono
    A2P023: Geothermal energy systemnonononoyesno
    A2P023: Waste heat recoveryyesyesnonoyesno
    A2P023: Waste to energynononononono
    A2P023: Polygenerationnononononono
    A2P023: Co-generationnonoyesnonono
    A2P023: Heat Pumpyesyesyesyesnono
    A2P023: Hydrogennononononono
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnononononono
    A2P023: Biogasnononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnoyesno
    A2P024: Energy management systemyesnoyesnoyesno
    A2P024: Demand-side managementyesnoyesnonono
    A2P024: Smart electricity gridyesnononoyesno
    A2P024: Thermal Storagenonononoyesno
    A2P024: Electric Storagenonoyesnoyesno
    A2P024: District Heating and Coolingyesnoyesnonono
    A2P024: Smart metering and demand-responsive control systemsnonoyesnonono
    A2P024: P2P – buildingsnononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesnoyesnono
    A2P025: Energy efficiency measures in historic buildingsnononononono
    A2P025: High-performance new buildingsyesnoyesnoyesno
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononoyesno
    A2P025: Urban data platformsyesnonononono
    A2P025: Mobile applications for citizensnononononono
    A2P025: Building services (HVAC & Lighting)yesnoyesyesyesno
    A2P025: Smart irrigationnonoyesnonono
    A2P025: Digital tracking for waste disposalnononononono
    A2P025: Smart surveillancenonoyesnonono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnonononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononoyesno
    A2P026: e-Mobilityyesnoyesnoyesno
    A2P026: Soft mobility infrastructures and last mile solutionsyesnoyesnonono
    A2P026: Car-free areanonoyesnonono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoYesNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoYesNoYes
    A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUSLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesCarbon and Energy NeutralityAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • PPP models,
    • Circular economy models
    • Innovative business models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Quality of Life
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Co-creation / Citizen engagement strategies
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Carbon-free
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Greening strategies,
    • Cool Materials
    • Energy Neutral,
    • Low Emission Zone
    • Other
    A3P009: OtherEnergy Positive, Low Emission ZoneCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.PED-ACT project.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • New construction,
    • Renovation
    • Renovation
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Re-use / Transformation Area
    • Re-use / Transformation Area,
    • New Development,
    • Retrofitting Area
    • Retrofitting Area
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction202419862022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential14000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential9800
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential100009800
    B1P011: Population density before intervention
    B1P011: Population density before intervention0034000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0.041379310344828034.337771548704000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnonoyesnono
    B1P013 - Residential: Specify the sqm [m²]50800
    B1P013: Officeyesnonononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilityyesyesnononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonononoyesno
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonoyesnonono
    B1P013 - Institutional: Specify the sqm [m²]285.400
    B1P013: Natural areasnonononoyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasyesnonononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesnoyesyesno
    B1P014 - Residential: Specify the sqm [m²]50800
    B1P014: Officeyesyesnononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynoyesnononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesnononoyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesnonono
    B1P014 - Institutional: Specify the sqm [m²]280000
    B1P014: Natural areasnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesyesnononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernoyesnononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: Scale
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholdersStakeholder participation supported by socio-economic research
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Economic growth need4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
    C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P003: Lack of public participation4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P010: Economic crisis4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
    C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Planning/leading,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Real Estate developers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)