Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Uncompare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Măgurele, Laser Valley – Land of Lights
Leipzig, Baumwollspinnerei district
Pamplona
Lubia (Soria), CEDER-CIEMAT
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport)
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Barcelona, SEILAB & Energy SmartLab
Istanbul, Ozyegin University Campus
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraMăgurele, Laser Valley – Land of LightsLeipzig, Baumwollspinnerei districtPamplonaLubia (Soria), CEDER-CIEMATBodø, Airport, NyBy – Ny Flyplass (New City – New Airport)Aalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkBarcelona, SEILAB & Energy SmartLabIstanbul, Ozyegin University Campus
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesyesnonoyesnonono
PED relevant case studyyesnononononoyesnoyes
PED Lab.nononoyesyesnoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyesyesnoyes
Annual energy surplusnonononononononono
Energy communitynononoyesnononoyesno
Circularityyesnononononononono
Air quality and urban comfortnonoyesnoyesnononoyes
Electrificationnonoyesnonononoyesyes
Net-zero energy costnonononononononono
Net-zero emissionnoyesnonoyesyesnoyesno
Self-sufficiency (energy autonomous)nonononoyesnonoyesno
Maximise self-sufficiencynonononononoyesnono
Othernoyesyesnonoyesnoyesyes
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityNet-zero emission; Annual energy surplusEnergy efficient; Sustainable neighbourhood; Social aspects/affordabilityGreen ITalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning PhaseIn operationImplementation Phase
A1P006: Start Date
A1P006: Start date01/1506/2411/1901/2011/2201/201110/24
A1P007: End Date
A1P007: End date12/3507/2812/2311/2502/201310/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • GIS open datasets
  • General statistical datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
        A1P011: Geographic coordinates
        X Coordinate (longitude):24.7537777826.02182612.318458-1.64323-2.50814.36316910.0072.129.258300
        Y Coordinate (latitude):60.2162222244.29987451.32649242.8168741.60367.27195457.04102841.341.030600
        A1P012: Country
        A1P012: CountryFinlandRomaniaGermanySpainSpainNorwayDenmarkSpainTurkey
        A1P013: City
        A1P013: CityEspooMăgureleLeipzigPamplonaLubia - SoriaBodøAalborgBarcelona and TarragonaIstanbul
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCfaDfbCfbCfbDfcDfbCsaCfa
        A1P015: District boundary
        A1P015: District boundaryGeographicFunctionalGeographicGeographicVirtualVirtualGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicPublicPublicPublicPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED26015
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]17000
        A1P020: Total ground area
        A1P020: Total ground area [m²]58000030000235500006400000340000031308000285.400
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area001000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononononononoyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonononononononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonononononononoyes
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnoyesnono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernoyesnonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the case.Business angels
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Job creation
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: OtherCircular economySustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
        Contact person for general enquiries
        A1P026: NameJoni MäkinenChristoph GollnerSimon BaumOscar Puyal LAtorreDr. Raquel RamosChristoph GollnerKristian OlesenDr. Jaume Salom, Dra. Cristina CorcheroCem Keskin
        A1P027: OrganizationCity of EspooFFgCENERO Energy GmbHEndef Engineering SLCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)FFGAalborg UniversityIRECCenter for Energy, Environment and Economy, Ozyegin University
        A1P028: AffiliationMunicipality / Public BodiesOtherOtherSME / IndustryResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailjoni.makinen@espoo.fichritoph.gollner@ffg.atsib@cenero.deoscar.puyal@endef.comraquel.ramos@ciemat.eschristoph.gollner@ffg.atKristian@plan.aau.dkJsalom@irec.catcem.keskin@ozyegin.edu.tr
        Contact person for other special topics
        A1P030: NameSimon BaumDr. Oscar SecoAlex Søgaard MorenoM. Pınar Mengüç
        A1P031: Emailsib@cenero.deoscar.seco@ciemat.esasm@aalborg.dkpinar.menguc@ozyegin.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Stakeholder engagement, expert energy system analysis, future scenariosEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhNot included, the campus is a non car area except emergencies
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.51.65218
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.4148
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnoyesnonoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]4
        A2P011: Windnonononoyesnoyesnono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononoyesnononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononoyesnononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononoyesnono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononoyesnononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononoyesnononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPyesnononoyesnoyesnono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononoyesnononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]78.82.4216203.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]15.4399
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononoyesnono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononononoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnonononononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityMode of transport; Access to public transport
        A2P022: EnergyapplyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and CommunityNumber of people interested in participating in an energy communityDelivery and proximity to amenities
        A2P022: Waste
        A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesnonoyesyesnoyesyesyes
        A2P023: Solar thermal collectorsnoyesyesnoyesyesyesnono
        A2P023: Wind Turbinesnonononoyesnononoyes
        A2P023: Geothermal energy systemnoyesnonoyesyesnonono
        A2P023: Waste heat recoveryyesnononoyesyesyesnono
        A2P023: Waste to energynonononononoyesnono
        A2P023: Polygenerationnonononoyesnononono
        A2P023: Co-generationnonononoyesnononoyes
        A2P023: Heat Pumpyesnoyesnoyesyesyesnoyes
        A2P023: Hydrogennonononoyesnononono
        A2P023: Hydropower plantnonononoyesnononono
        A2P023: Biomassnonononoyesnoyesnono
        A2P023: Biogasnonononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnononoyesnonoyesyes
        A2P024: Energy management systemyesnononoyesnoyesyesyes
        A2P024: Demand-side managementyesnononoyesnoyesnoyes
        A2P024: Smart electricity gridyesnononoyesnoyesyesno
        A2P024: Thermal Storagenonononoyesnoyesnono
        A2P024: Electric Storagenonononoyesnoyesyesyes
        A2P024: District Heating and Coolingyesyesnonoyesyesyesnoyes
        A2P024: Smart metering and demand-responsive control systemsnononoyesyesnoyesnoyes
        A2P024: P2P – buildingsnonononononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononoyesnoyesnono
        A2P025: Energy efficiency measures in historic buildingsnonononononononono
        A2P025: High-performance new buildingsyesnononononononoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononono
        A2P025: Urban data platformsyesnononononononono
        A2P025: Mobile applications for citizensnonononononononono
        A2P025: Building services (HVAC & Lighting)yesnononoyesnonoyesyes
        A2P025: Smart irrigationnonononononononoyes
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillancenonoyesyesnonoyesnoyes
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnonononononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononononono
        A2P026: e-Mobilityyesnoyesnononononoyes
        A2P026: Soft mobility infrastructures and last mile solutionsyesnononononononoyes
        A2P026: Car-free areanonononoyesnononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesYesYes
        A2P028: If yes, please specify and/or enter notesIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYes
        A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.Reduction of 1018000 tons CO2 by 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Carbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • PPP models,
        • Circular economy models
        • Innovative business models,
        • Other
        • Demand management Living Lab
        • Life Cycle Cost,
        • Circular economy models
        • Demand management Living Lab
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Policy Forums,
        • Citizen/owner involvement in planning and maintenance
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Other
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaRuralSuburban areaSuburban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area
        • Re-use / Transformation Area,
        • New Development
        • Preservation Area
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential16.931
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential14000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential100009800
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000034
        B1P012: Population density after intervention
        B1P012: Population density after intervention0.041379310344828000000034.337771548704
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnononononononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officeyesnononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilityyesnononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononoyes
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnonononononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasyesnononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesnononoyesnonono
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officeyesyesnonononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynoyesnonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnononononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnoyesnonononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesyesnonononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononoyesnonono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
        B2P003: Scale of action
        B2P003: ScaleCityDistrictDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esKristian OlesenIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Civic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/UniversityResearch center/UniversityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Industrial
        • Academia,
        • Private
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P002: Economic growth need4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
        C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P003: Lack of public participation4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
        C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Non-effective regulations3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
        C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers3 - Moderately importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
        C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important4 - Important
        C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Rebound effect3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important
        C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P010: Economic crisis4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important
        C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P011: Energy price distortion3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • Planning/leading,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)