Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Uncompare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Uncompare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Borlänge, Rymdgatan’s Residential Portfolio
Ankara, Çamlık District
Riga, Ķīpsala, RTU smart student city
Leipzig, Baumwollspinnerei district
Aarhus, Brabrand
Freiburg im Breisgau, Dietenbach
Halmstad, Fyllinge
Salzburg, Gneis district
Utrecht, Kanaleneiland
Bærum, Eiksveien 116
Drammen, Jacobs Borchs Gate
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Firenze, Novoli-Cascine district, REPLICATE
Oslo, Verksbyen
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraBorlänge, Rymdgatan’s Residential PortfolioAnkara, Çamlık DistrictRiga, Ķīpsala, RTU smart student cityLeipzig, Baumwollspinnerei districtAarhus, BrabrandFreiburg im Breisgau, DietenbachHalmstad, FyllingeSalzburg, Gneis districtUtrecht, KanaleneilandBærum, Eiksveien 116Drammen, Jacobs Borchs GateBucharest, The Bucharest University of Economic Studies (ASE) PED LabFirenze, Novoli-Cascine district, REPLICATEOslo, Verksbyen
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesyesyesyesnonoyesnononononoyes
PED relevant case studyyesyesyesnonoyesyesyesnoyesyesyesnoyesno
PED Lab.nononononoyesnonononononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesnoyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnonoyesnonoyesnononononoyes
Energy communitynoyesyesyesnoyesnoyesyesyesnonononono
Circularityyesnononononononononononononono
Air quality and urban comfortnonononoyesnononoyesnononononoyes
Electrificationnoyesyesnoyesnonononoyesyesnononono
Net-zero energy costnonoyesnononononononoyesnononono
Net-zero emissionnonoyesnonoyesnonononoyesyesnonoyes
Self-sufficiency (energy autonomous)nononoyesnonononononononononono
Maximise self-sufficiencynoyesyesyesnonononononononononono
Othernonononoyesnoyesnonononoyesyesyesno
Other (A1P004)Net-zero emission; Annual energy surplusSustainable neighbourhoodEnergy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumpsSmart BuildingsSocial aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseCompletedCompletedPlanning PhaseCompletedImplementation Phase
A1P006: Start Date
A1P006: Start date01/1510/2201/2401/2401/1201/2101/2011/2301/1801/0903/2501/1707/18
A1P007: End Date
A1P007: End date12/3509/2512/2612/2601/3001/2411/2606/2312/1212/2712/2108/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
            A1P011: Geographic coordinates
            X Coordinate (longitude):24.7537777815.39449532.79536924.0816833912.31845810.2134057.79547612.9205413.0412165.087510.533310.23060326.0973943259149811.23053910.986173354432992
            Y Coordinate (latitude):60.2162222260.48660939.88181256.9524595651.32649256.14962848.00615756.6519447.77101952.065359.910059.74133444.4472496751992943.79271159.22429716642046
            A1P012: Country
            A1P012: CountryFinlandSwedenTurkeyLatviaGermanyDenmarkGermanySwedenAustriaNetherlandsNorwayNorwayRomaniaItalyNorway
            A1P013: City
            A1P013: CityEspooBorlängeAnkaraRigaLeipzigAarhusFreiburg im BreisgauHalmstadSalzburgUtrecht (Kanaleneiland)BærumDrammenBucharestFirenzeFredrikstad
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).DfbDsbDsbCfbDfbCfbCfbDwbDfbCfbDfbDfbCsaCfaCfb
            A1P015: District boundary
            A1P015: District boundaryGeographicGeographicGeographicGeographicFunctionalGeographicGeographicGeographicGeographicOtherGeographicGeographic
            OtherGeographicBuilding
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:MixedMixedPrivatePublicMixedPublicMixedMixedPrivatePublicPrivatePublicMixedPrivate
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersSingle Owner
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED102571522501712
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]370022600170000170001997623550
            A1P020: Total ground area
            A1P020: Total ground area [m²]5800009945508001192643000029100001000485
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area000110000000000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenononononononoyesnonononononoyes
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernononononononononononoyesnonono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnononononononononononononoyesno
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnononononononononoyesnononoyesno
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnonononononononononononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnonononononononononoyesnonoyesno
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernonononononononononononoyesnono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesnoyesyesnononononono
            A1P022i: Add the value in EUR if available [EUR]7500000
            A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononononononononononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: OtherMultiple different funding schemes depending on the case.
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Job creation,
            • Positive externalities,
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            • Boosting local and sustainable production
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Boosting local and sustainable production
            • Boosting local and sustainable production
            • Positive externalities,
            • Other
            • Other
            A1P023: OtherCircular economySustainable and replicable business models regarding renewable energy systemsBoosting social cooperation and social aidSocial housing
            A1P024: More comments:
            A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
            Contact person for general enquiries
            A1P026: NameJoni MäkinenJingchun ShenProf. Dr. İpek Gürsel DİNOJudith StiekemaSimon BaumJohanne Bräuner Nygaard HansenChristoph GollnerMarkus OlofsgårdAbel MagyariDr. Gonçalo Homem De Almeida Rodriguez CorreiaJohn Einar ThommesenChristoph GollnerAdela BaraChristoph GollnerTonje Healey Trulsrud
            A1P027: OrganizationCity of EspooHögskolan DalarnaMiddle East Technical UniversityOASCCENERO Energy GmbHITK, the city of AarhusFFGAFRYABUDDelft University of TechnologySINTEF CommunityFFGThe Bucharest University of Economic StudiesFFGNorwegian University of Science and technology (NTNU)
            A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherOtherMunicipality / Public BodiesOtherOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityOtherResearch Center / University
            A1P028: Othernot for profit private organisationCENERO Energy GmbH
            A1P029: Emailjoni.makinen@espoo.fijih@du.seipekg@metu.edu.trjudith@oascities.orgsib@cenero.dehjobr@aarhus.dkchristoph.gollner@ffg.atmarkus.olofsgard@afry.commagyari.abel@abud.hug.correia@tudelft.nljohn.thommesen@sintef.nochristoph.gollner@ffg.atBara.adela@ie.ase.rochristoph.gollner@ffg.attonje.h.trulsrud@ntnu.no
            Contact person for other special topics
            A1P030: NameXingxing ZhangAssoc. Prof. Onur TaylanSimon BaumStrassl IngeborgQiaochu FanJohn Einar Thommesen
            A1P031: Emailxza@du.seotaylan@metu.edu.trsib@cenero.deinge.strassl@salzburg.gv.atq.fan-1@tudelft.nljohn.thommesen@sintef.no
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            • Energy efficiency,
            • Energy production,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Digital technologies
            • Energy efficiency,
            • Energy production,
            • Indoor air quality
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            • Energy efficiency
            • Energy efficiency,
            • Energy flexibility,
            • Digital technologies,
            • Indoor air quality
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Indoor air quality
            A2P001: Other
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.link based regulation of electricity grid- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoYesNoNoYesYes
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesNoNoNoNo
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesYesYesNoNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Not determined yet
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.67773.44680001.650.16
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.036560.52850000.053
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]00
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesnoyesnoyesnonoyesyesnononononoyes
            A2P011: PV - specify production in GWh/annum [GWh/annum]43.42400.77706640.18
            A2P011: Windnononoyesnonononononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydrononononononononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnonononononononononononononono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnonononononononononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnoyesnoyesnonononononononononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
            A2P011: Othernonononononononononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnononononononoyesyesnononononono
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnonononononononononononononono
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnononoyesnonononononononononono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPyesnononononononononononononono
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnonononononononononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnoyesnonononononononononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
            A2P012: Biomass_firewood_thnonononononononononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]78.80.3183.9762.4210.819016
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]15.40.2055
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00-1
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnonoyesyesnonononononononononono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonononononononononononononono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonononononononononononononono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernoyesnonononononononononononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnonononononononononononononono
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
            A2P018: Windnonononononononononononononono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononononononononononononononono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononononononononononononono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonononononononononononononono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonononononononononononononono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernoyesnonononononononononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonononononononononononononono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonononononononononononononono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnonononononononononononononono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnonononononononononononononono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonononononononononononononono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonononononononononononononono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononononononononononononono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernoyesnonononononononononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary00.538395721925130000000000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]4500006.93-6.035
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & SecuritynonePersonal Safety
            A2P022: Healththermal comfort diagramCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
            A2P022: Educationnone
            A2P022: MobilitynoneImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsSustainable mobility
            A2P022: Energynormalized CO2/GHG & Energy intensityapplyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityYesEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
            A2P022: Water
            A2P022: Economic developmentcost of excess emissionsInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceEconomic Performance: capital costs, operational costs, overall performance
            A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
            A2P022: Waste
            A2P022: OtherSmartness and Flexibility
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsyesyesyesnononoyesyesyesyesnononoyesyes
            A2P023: Solar thermal collectorsnoyesnonoyesnoyesnonononononoyesno
            A2P023: Wind Turbinesnononononononononoyesnonononono
            A2P023: Geothermal energy systemnoyesnonononononoyesnononononoyes
            A2P023: Waste heat recoveryyesyesnonononononononononononono
            A2P023: Waste to energynonononononononononononononono
            A2P023: Polygenerationnonononononononononononononono
            A2P023: Co-generationnonononononononononononononono
            A2P023: Heat Pumpyesyesyesnoyesnoyesnonononoyesnoyesyes
            A2P023: Hydrogennonononononononononononononono
            A2P023: Hydropower plantnonononononononononononononono
            A2P023: Biomassnonononononononononononononono
            A2P023: Biogasnonononononononononononononono
            A2P023: OtherPhotovoltaics are considered for the next years
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnononoyesnonononoyesyesyes
            A2P024: Energy management systemyesnonoyesnonononoyesyesnonoyesnoyes
            A2P024: Demand-side managementyesnonoyesnononoyesyesnononoyesnoyes
            A2P024: Smart electricity gridyesnonoyesnononoyesyesyesnononoyesno
            A2P024: Thermal Storagenoyesnoyesnonoyesnononononononono
            A2P024: Electric Storagenononoyesnononononoyesnonononono
            A2P024: District Heating and Coolingyesyesnoyesnononononononoyesnonono
            A2P024: Smart metering and demand-responsive control systemsnononoyesnononoyesnononononoyesyes
            A2P024: P2P – buildingsnonononononononoyesnononononono
            A2P024: Other
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnoyesyesnonononononoyesnonoyesyesno
            A2P025: Energy efficiency measures in historic buildingsnonononononononononononoyesnono
            A2P025: High-performance new buildingsyesnononononononoyesnononononoyes
            A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononononononoyesnononoyesno
            A2P025: Urban data platformsyesnonoyesnononononoyesnonononono
            A2P025: Mobile applications for citizensnononoyesnononononononononoyesno
            A2P025: Building services (HVAC & Lighting)yesyesyesyesnonononoyesnononoyesnoyes
            A2P025: Smart irrigationnonononononononononononononono
            A2P025: Digital tracking for waste disposalnonononononononononononononono
            A2P025: Smart surveillancenonononoyesnononononononoyesnono
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)yesnonononononononoyesnonononono
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononoyesnoyesnoyesyesnonononono
            A2P026: e-Mobilityyesnononoyesnononoyesyesnononoyesno
            A2P026: Soft mobility infrastructures and last mile solutionsyesnononononononononononononono
            A2P026: Car-free areanonononononononononononononono
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.Shared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesNoNoNoNoNoYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateNS3700 Norwegian Passive House
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoNoNoNoNoYes
            A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies
            • Energy master planning (SECAP, etc.),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC)
            • Smart cities strategies
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps
            • Biogas
            • Electrification of Heating System based on Heat Pumps
            • Electrification of Heating System based on Heat Pumps
            A3P003: Other
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Nursing home for people with special needs
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • PPP models,
            • Circular economy models
            • Open data business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Local trading
            • Open data business models,
            • Innovative business models,
            • Demand management Living Lab
            • Innovative business models,
            • Other
            • Local trading
            • Innovative business models,
            • Local trading
            • Innovative business models,
            • Local trading,
            • Existing incentives
            • Innovative business models,
            • Demand management Living Lab
            A3P006: Otheroperational savings through efficiency measures
            A3P007: Social models
            A3P007: Social models
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Quality of Life
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Affordability,
            • Digital Inclusion
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Affordability
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies
            • Behavioural Change / End-users engagement
            • Co-creation / Citizen engagement strategies,
            • Citizen Social Research
            • Behavioural Change / End-users engagement,
            • Citizen/owner involvement in planning and maintenance
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Strategies towards social mix,
            • Affordability,
            • Citizen/owner involvement in planning and maintenance
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Prevention of energy poverty,
            • Digital Inclusion
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • Building / district Certification
            • Digital twinning and visual 3D models,
            • District Energy plans
            • Digital twinning and visual 3D models
            • Strategic urban planning
            • Building / district Certification
            • Strategic urban planning,
            • District Energy plans
            • Digital twinning and visual 3D models
            A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Greening strategies,
            • Nature Based Solutions (NBS)
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Sustainable Urban drainage systems (SUDS)
            • Energy Neutral,
            • Low Emission Zone
            • Energy Neutral
            • Other
            • Energy Neutral
            • Energy Neutral,
            • Carbon-free
            • Energy Neutral,
            • Low Emission Zone
            • Energy Neutral,
            • Low Emission Zone,
            • Nature Based Solutions (NBS)
            • Other
            • Energy Neutral,
            • Carbon-free
            A3P009: OtherEnergy Positive, Low Emission ZonePositive Energy Balance for the demo sitePEB
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspects
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.PEBThe case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.PED-ACT project.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaSuburban areaSuburban areaSuburban areaUrban areaSuburban areaUrban areaSuburban area
            B1P004: Type of district
            B2P004: Type of district
            • New construction
            • Renovation
            • Renovation
            • New construction
            • New construction
            • New construction
            • New construction
            • Renovation
            • Renovation
            • New construction
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Re-use / Transformation Area
            • Re-use / Transformation Area,
            • Retrofitting Area
            • Retrofitting Area
            • Preservation Area
            • New Development
            • New Development
            • New Development
            • New Development
            • Retrofitting Area
            • Retrofitting Area
            • New Development
            B1P006: Year of construction
            B1P006: Year of construction199019862024
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential100
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential14000100
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential6
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential100006
            B1P011: Population density before intervention
            B1P011: Population density before intervention00000000000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention0.0413793103448280.010658622423328000000000000
            B1P013: Building and Land Use before intervention
            B1P013: Residentialyesyesyesnonononononononononoyesno
            B1P013 - Residential: Specify the sqm [m²]43605080020200
            B1P013: Officeyesnononononononononononononono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilityyesnononononononononononononoyes
            B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
            B1P013: Commercialnonononononononononononononono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnonononononononononononononono
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnonononononoyesyesyesnononononono
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononononononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasyesnononononononononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernoyesnonononononononononononono
            B1P013 - Other: Specify the sqm [m²]706
            B1P014: Building and Land Use after intervention
            B1P014: Residentialyesyesyesnononoyesnoyesnonononoyesyes
            B1P014 - Residential: Specify the sqm [m²]43605080020200
            B1P014: Officeyesnononononononononononononono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononononononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialyesnononononononononononononono
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnonononononoyesnononononononono
            B1P014 - Institutional: Specify the sqm [m²]
            B1P014: Natural areasnonononononoyesnoyesnononononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalyesnononononononononononononono
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernoyesnonononoyesnononononononono
            B1P014 - Other: Specify the sqm [m²]706
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life time
            B2P003: Scale of action
            B2P003: ScaleDistrictDistrictDistrictDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installation
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabResearch center/University
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Citizens, public, NGO
            B2P009: Other
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Sustainability,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholders
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling,
            • Decision making models
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
            C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: Decreasing costs of innovative materials3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P001: Presence of integrated urban strategies and plans4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
            C1P002: Urban re-development of existing built environment5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Economic growth need4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
            C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
            C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P003: Lack of good cooperation and acceptance among partners5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P003: Lack of public participation4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Lack of institutions/mechanisms to disseminate information4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003:Long and complex procedures for authorization of project activities3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Complicated and non-comprehensive public procurement3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P003: Lack of internal capacities to support energy transition4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
            C1P005: Regulatory instability3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Non-effective regulations3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Insufficient or insecure financial incentives5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers2 - Slightly important- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Deficient planning3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Lack/cost of computational scalability3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Grid congestion, grid instability3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Low acceptance of new projects and technologies3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Lack of trust beyond social network3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P008: Rebound effect3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P009: Lack of awareness among authorities3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P010: Insufficient external financial support and funding for project activities4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P010: Economic crisis4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
            C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P010: Limited access to capital and cost disincentives3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P011: Energy price distortion3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading,
            • Design/demand aggregation
            • Monitoring/operation/management
            • Planning/leading
            • Design/demand aggregation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: Research & Innovation
            • Planning/leading,
            • Design/demand aggregation
            • Planning/leading
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Financial/Funding
            • Design/demand aggregation,
            • Construction/implementation
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Monitoring/operation/management
            C1P012: Analyst, ICT and Big Data
            • Planning/leading,
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Monitoring/operation/management
            • Monitoring/operation/management
            C1P012: Business process management
            • Design/demand aggregation,
            • Construction/implementation
            • None
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Urban Services providers
            • Planning/leading,
            • Construction/implementation
            • None
            • Planning/leading,
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Real Estate developers
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • Construction/implementation
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Design/Construction companies
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            • None
            • Construction/implementation
            • Design/demand aggregation
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Design/demand aggregation
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • Planning/leading
            • Monitoring/operation/management
            • Design/demand aggregation
            • Design/demand aggregation
            C1P012: Industry/SME/eCommerce
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            • None
            • Construction/implementation
            • Construction/implementation
            C1P012: Other
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)