Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Uncompare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Innsbruck, Campagne-Areal
Tampere, Ilokkaanpuisto district
Groningen, PED North
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Riga, Ķīpsala, RTU smart student city
Amsterdam, Buiksloterham PED
Utrecht, the Netherlands (District of Kanaleneiland)
REPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), Firenze
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraInnsbruck, Campagne-ArealTampere, Ilokkaanpuisto districtGroningen, PED NorthAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkRiga, Ķīpsala, RTU smart student cityAmsterdam, Buiksloterham PEDUtrecht, the Netherlands (District of Kanaleneiland)REPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), FirenzeFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnonononoyesyesnonoyes
PED relevant case studyyesyesyesnoyesnonoyesyesno
PED Lab.nononoyesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyesyes
Annual energy surplusnononoyesnonoyesnonono
Energy communitynonoyesyesnoyesyesyesnoyes
Circularityyesnonoyesnonoyesnonono
Air quality and urban comfortnononononononononono
Electrificationnonoyesnononoyesyesnoyes
Net-zero energy costnononononononononono
Net-zero emissionnoyesyesyesnonoyesnonoyes
Self-sufficiency (energy autonomous)nonoyesnonoyesnononono
Maximise self-sufficiencynonononoyesyesnononono
Othernonononononononoyesno
Other (A1P004)Social aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseCompletedCompletedImplementation PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date01/1504/1604/1412/1811/2201/2411/1911/2301/1711/21
A1P007: End Date
A1P007: End date12/3504/2210/2312/2311/2512/2610/2511/2612/2111/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • None yet, but coming
  • TNO, Hanze, RUG,
  • Ped noord book
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
      A1P011: Geographic coordinates
      X Coordinate (longitude):24.7537777811.42434673814025623.7980836.53512110.00724.081683394.90415.087511.2305397.885857135842917
      Y Coordinate (latitude):60.2162222247.27147078672910461.46408853.23484657.04102856.9524595652.367652.065343.79271147.986535207080045
      A1P012: Country
      A1P012: CountryFinlandAustriaFinlandNetherlandsDenmarkLatviaNetherlandsNetherlandsItalyGermany
      A1P013: City
      A1P013: CityEspooInnsbruckTampereGroningenAalborgRigaAmsterdamUtrecht (Kanaleneiland)FirenzeFreiburg im Breisgau
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbCfaDfbCfbCfbCfbCfaCfb
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicVirtualFunctionalVirtualGeographicFunctionalGeographicVirtual
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedPublicPublicMixedPrivateMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED46715602941
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]222779.0001.0117000028500284070
      A1P020: Total ground area
      A1P020: Total ground area [m²]5800001135125.00017.1323130800011926429100004920000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0200010000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonoyesyesnonoyesnonono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonoyesyesnononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononononoyesno
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonoyesyesnononoyesyesno
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonononoyesyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesyesnonoyes
      A1P022i: Add the value in EUR if available [EUR]7500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonoyesnonononoyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Other
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      A1P023: OtherCircular economyCreate affordable appartments for the citizens
      A1P024: More comments:
      A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJoni MäkinenGeorgios DermentzisSenior Scientist Terttu VainioJasper Tonen, Elisabeth KoopsKristian OlesenJudith StiekemaOmar ShafqatDr. Gonçalo Homem De Almeida Rodriguez CorreiaChristoph GollnerDr. Annette Steingrube
      A1P027: OrganizationCity of EspooUniversity of InnsbruckVTT Technical Research Centre of FinlandMunicipality of GroningenAalborg UniversityOASCAmsterdam University of Applied SciencesDelft University of TechnologyFFGFraunhofer Institute for solar energy systems
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
      A1P028: Othernot for profit private organisation
      A1P029: Emailjoni.makinen@espoo.fiGeorgios.Dermentzis@uibk.ac.atterttu.vainio@vtt.fiJasper.tonen@groningen.nlKristian@plan.aau.dkjudith@oascities.orgo.shafqat@hva.nlg.correia@tudelft.nlchristoph.gollner@ffg.atAnnette.Steingrube@ise.fraunhofer.de
      Contact person for other special topics
      A1P030: NameAlex Søgaard MorenoOmar ShafqatQiaochu Fan
      A1P031: Emailasm@aalborg.dko.shafqat@hva.nlq.fan-1@tudelft.nl
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsStakeholder engagement, expert energy system analysis, future scenariosA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.City vision, Innovation AteliersEnergy system modeling
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoNoNoYesYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoNoYesNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYesNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.3902.32188000135.715
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.6550.70.33148500031.76
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesnononoyesnonono
      A2P011: PV - specify production in GWh/annum [GWh/annum]40.420.7
      A2P011: Windnonononoyesyesnononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononoyesnonono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononoyesnononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononoyesnonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonoyesyesnonoyesnonono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononoyesnononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononoyesnoyesyesnonono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesnonoyesyesnoyesnonono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
      A2P012: Biomass_peat_heatnononononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononoyesnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.PV plant of energy community locates outside of the city, not on the slotGeothermal heatpump systems, Waste heat from data centersVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.53 MW PV potential in all three quarters; no other internal renewable energy potentials known
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]78.80.960.7620132.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]15.4-2399
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesyesnonono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononoyesnonono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononoyesnonono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononoyesnonononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononononoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononoyesnonono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononoyesnonono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononoyesnonono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononoyesnonono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononoyesnonono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononoyesnonono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononoyesnonono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononoyesnonono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononoyesnonono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0000000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000250
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
      A2P022: Education
      A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsyes
      A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Target zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityyes
      A2P022: Water
      A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
      A2P022: Housing and Communityyes
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesnoyesyesyesyes
      A2P023: Solar thermal collectorsnononoyesyesnononoyesyes
      A2P023: Wind Turbinesnononononononoyesnono
      A2P023: Geothermal energy systemnonoyesyesnonoyesnonoyes
      A2P023: Waste heat recoveryyesnoyesyesyesnoyesnonoyes
      A2P023: Waste to energynononoyesyesnoyesnonoyes
      A2P023: Polygenerationnononononononononono
      A2P023: Co-generationnononononononononoyes
      A2P023: Heat Pumpyesyesyesyesyesnoyesnoyesyes
      A2P023: Hydrogennononononononononoyes
      A2P023: Hydropower plantnononononononononoyes
      A2P023: Biomassnonononoyesnoyesnonoyes
      A2P023: Biogasnonononononoyesnonoyes
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesnoyesyesnoyesyes
      A2P024: Energy management systemyesnoyesyesyesyesyesyesnoyes
      A2P024: Demand-side managementyesnoyesyesyesyesyesnonoyes
      A2P024: Smart electricity gridyesnononoyesyesyesyesyesyes
      A2P024: Thermal Storagenoyesnoyesyesyesyesnonoyes
      A2P024: Electric Storagenononoyesyesyesyesyesnoyes
      A2P024: District Heating and Coolingyesyesnoyesyesyesyesnonoyes
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesyesyesnoyesyes
      A2P024: P2P – buildingsnoyesnonononoyesnonoyes
      A2P024: OtherElectric grid as virtual battery
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonononoyesnoyesyesyesyes
      A2P025: Energy efficiency measures in historic buildingsnononoyesnonoyesnonoyes
      A2P025: High-performance new buildingsyesyesyesyesnonoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnonoyesyesyesno
      A2P025: Urban data platformsyesnonoyesnoyesyesyesnoyes
      A2P025: Mobile applications for citizensnonoyesnonoyesyesnoyesno
      A2P025: Building services (HVAC & Lighting)yesyesyesnonoyesyesnonono
      A2P025: Smart irrigationnonononononoyesnonono
      A2P025: Digital tracking for waste disposalnonononononoyesnonono
      A2P025: Smart surveillancenonononoyesnonononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesnononononoyesyesnoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononononoyesyesnoyes
      A2P026: e-Mobilityyesnonoyesnonoyesyesyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsyesnononononoyesnonoyes
      A2P026: Car-free areanonononononoyesnonono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesYesYesYesNoNo
      A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"Energy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      • Smart cities strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030Climate neutrality by 2035
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Other
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
      A3P006: Economic strategies
      A3P006: Economic strategies
      • PPP models,
      • Circular economy models
      • Open data business models,
      • Circular economy models
      • Innovative business models,
      • Blockchain
      • Life Cycle Cost,
      • Circular economy models
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • Local trading,
      • Existing incentives
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Social incentives,
      • Quality of Life,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral
      • Energy Neutral,
      • Life Cycle approach
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their ownRegulatory sandbox
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Functional PEDAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • New construction
      • Renovation
      • New construction
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area
      • Re-use / Transformation Area,
      • New Development
      • New Development
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction2022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential016.9315898
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential140007803005898
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential10000
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0.0413793103448280.068716412650868120000000.0011987804878049
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnononononononoyesyes
      B1P013 - Residential: Specify the sqm [m²]20200
      B1P013: Officeyesnonononononononoyes
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilityyesnononononoyesnonoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononononononononoyes
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononononoyes
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonoyesnonononononoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononononononoyes
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasyesnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesyesyesnononoyesnoyesyes
      B1P014 - Residential: Specify the sqm [m²]20200
      B1P014: Officeyesnononononoyesnonoyes
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononononoyes
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesyesnonononoyesnonoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnononononononoyes
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononononononoyes
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesyesnonononoyesnonoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.An ongoing process and dialogue with local stakeholders to determine the future development of the area.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.Kristian Olesen
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important2 - Slightly important5 - Very important5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important
      C1P001: Social acceptance (top-down)3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important
      C1P001: Presence of integrated urban strategies and plans4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important3 - Moderately important2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important2 - Slightly important2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important
      C1P002: Economic growth need4 - Important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important
      C1P002: Territorial and market attractiveness3 - Moderately important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P003: Lack of good cooperation and acceptance among partners5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P003: Lack of public participation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
      C1P005: Non-effective regulations3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
      C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
      C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
      C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
      C1P008: Rebound effect3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P010: Economic crisis4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
      C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
      C1P011: Energy price distortion3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Construction/implementation
      • None
      C1P012: Business process management
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • Planning/leading
      • Monitoring/operation/management
      • None
      C1P012: Urban Services providers
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • None
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      • None
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • None
      • None
      • Design/demand aggregation
      • Design/demand aggregation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading
      • Planning/leading
      • None
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation
      • None
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)