Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Uncompare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Uncompare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Groningen, PED North
Barcelona, SEILAB & Energy SmartLab
Tampere, Ilokkaanpuisto district
Hammarby Sjöstad, Hammarby Sjöstad 2.0
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Uden, Loopkantstraat
Örebro-Vivalla
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraGroningen, PED NorthBarcelona, SEILAB & Energy SmartLabTampere, Ilokkaanpuisto districtHammarby Sjöstad, Hammarby Sjöstad 2.0Aalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkUden, LoopkantstraatÖrebro-Vivalla
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnonononononono
PED relevant case studyyesnonoyesyesyesyesyes
PED Lab.noyesyesnonoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyes
Annual energy surplusnoyesnonononoyesno
Energy communitynoyesyesyesnononoyes
Circularityyesyesnononononono
Air quality and urban comfortnononononononono
Electrificationnonoyesyesnonoyesno
Net-zero energy costnononononononono
Net-zero emissionnoyesyesyesnononono
Self-sufficiency (energy autonomous)nonoyesyesnononono
Maximise self-sufficiencynononononoyesnono
Othernonoyesnoyesnonono
Other (A1P004)Green ITCarbon-free; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationCompletedIn operationPlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/1512/1801/201104/1401/1411/2206/1704/24
A1P007: End Date
A1P007: End date12/3512/2302/201310/2311/2505/2312/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • None yet, but coming
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
A1P011: Geographic coordinates
X Coordinate (longitude):24.753777786.5351212.123.79808318.10743010.0075.619115.19050
Y Coordinate (latitude):60.2162222253.23484641.361.46408859.30640557.04102851.660659.29595
A1P012: Country
A1P012: CountryFinlandNetherlandsSpainFinlandSwedenDenmarkNetherlandsSweden
A1P013: City
A1P013: CityEspooGroningenBarcelona and TarragonaTampereHammarby SjöstadAalborgUdenÖrebro-Vivalla
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfaCsaDfbDfbDfbCfbDwb
A1P015: District boundary
A1P015: District boundaryGeographicFunctionalVirtualVirtualVirtualGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedMixedPublicPrivatePublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED7061
A1P019: Conditioned space
A1P019: Conditioned space [m²]1.019.0002360
A1P020: Total ground area
A1P020: Total ground area [m²]58000017.13225.000313080003860
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area00000010
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenoyesnoyesnonoyesno
A1P022a: Add the value in EUR if available [EUR]7804440
A1P022b: Financing - PRIVATE - ESCO schemenononononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernoyesnoyesyesnonono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnoyesnoyesnononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnononononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononononono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononoyesnonono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnononono
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononoyesnonono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Boosting local and sustainable production
  • Boosting local and sustainable production
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherCircular economy
A1P024: More comments:
A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
Contact person for general enquiries
A1P026: NameJoni MäkinenJasper Tonen, Elisabeth KoopsDr. Jaume Salom, Dra. Cristina CorcheroSenior Scientist Terttu VainioChristoph GollnerKristian OlesenTonje Healey TrulsrudPer Carlborg
A1P027: OrganizationCity of EspooMunicipality of GroningenIRECVTT Technical Research Centre of FinlandFFGAalborg UniversityNorwegian University of Science and Technology (NTNU)Örebro University
A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityResearch Center / University
A1P028: Other
A1P029: Emailjoni.makinen@espoo.fiJasper.tonen@groningen.nlJsalom@irec.catterttu.vainio@vtt.fichristop.gollner@ffg.atKristian@plan.aau.dktonje.h.trulsrud@ntnu.noper.carlborg@oru.se
Contact person for other special topics
A1P030: NameAlex Søgaard Moreno
A1P031: Emailasm@aalborg.dk
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy production,
  • Digital technologies
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Waste management,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Stakeholder engagement, expert energy system analysis, future scenariosEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesNoNo
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.not included
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.52.302180.148
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.330.71480.109
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnoyesyesnonoyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]40.70.058
A2P011: Windnononononoyesnono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononoyesnono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnoyesnoyesnonoyesno
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnoyesnononononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnoyesnononononono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
A2P012: Waste heat+HPyesyesnononoyesnono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
A2P012: Biomass_peat_heatnononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnoyesnononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Geothermal heatpump systems, Waste heat from data centersPV plant of energy community locates outside of the city, not on the slotVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.*Annual energy use below is presentedin primary energy consumption
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]78.80.76200.194
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.43990.0368
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnonoyesnonononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononoyesnono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononononononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary00000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000-0.00043
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & SecurityPersonal Safety
A2P022: HealthHealthy community
A2P022: Education
A2P022: MobilitySustainable mobilityYes
A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionYes
A2P022: Water
A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
A2P022: Waste
A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesnoyesyesno
A2P023: Solar thermal collectorsnoyesnonoyesyesnono
A2P023: Wind Turbinesnononononononono
A2P023: Geothermal energy systemnoyesnoyesyesnoyesno
A2P023: Waste heat recoveryyesyesnoyesyesyesnono
A2P023: Waste to energynoyesnononoyesnono
A2P023: Polygenerationnononononononono
A2P023: Co-generationnononononononono
A2P023: Heat Pumpyesyesnoyesyesyesyesno
A2P023: Hydrogennononononononono
A2P023: Hydropower plantnononononononono
A2P023: Biomassnononononoyesnono
A2P023: Biogasnononononononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnononono
A2P024: Energy management systemyesyesyesyesnoyesyesno
A2P024: Demand-side managementyesyesnoyesnoyesyesyes
A2P024: Smart electricity gridyesnoyesnonoyesnono
A2P024: Thermal Storagenoyesnononoyesnono
A2P024: Electric Storagenoyesyesnonoyesnono
A2P024: District Heating and Coolingyesyesnonoyesyesnoyes
A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesyesno
A2P024: P2P – buildingsnononononononono
A2P024: OtherElectric grid as virtual battery
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnononononoyesnoyes
A2P025: Energy efficiency measures in historic buildingsnoyesnononononono
A2P025: High-performance new buildingsyesyesnoyesnonoyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnononononono
A2P025: Urban data platformsyesyesnononononono
A2P025: Mobile applications for citizensnononoyesnononono
A2P025: Building services (HVAC & Lighting)yesnoyesyesnonoyesno
A2P025: Smart irrigationnononononononono
A2P025: Digital tracking for waste disposalnononononononono
A2P025: Smart surveillancenononononoyesnono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnoyesnonononono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononononono
A2P026: e-Mobilityyesyesnononononono
A2P026: Soft mobility infrastructures and last mile solutionsyesnonononononono
A2P026: Car-free areanononononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesNoYesYesYesYes
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEPC = 0, energy neutral building
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoNoNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Urban Renewal Strategies
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Biogas
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
A3P006: Economic strategies
A3P006: Economic strategies
  • PPP models,
  • Circular economy models
  • Innovative business models,
  • Blockchain
  • Demand management Living Lab
  • Open data business models,
  • Circular economy models
  • Life Cycle Cost,
  • Circular economy models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance
  • Co-creation / Citizen engagement strategies,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Policy Forums,
  • Citizen/owner involvement in planning and maintenance
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Quality of Life
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Quality of Life,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • SECAP Updates
  • Strategic urban planning,
  • District Energy plans
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Energy Neutral,
  • Net zero carbon footprint,
  • Carbon-free,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Carbon-free
  • Energy Neutral,
  • Net zero carbon footprint
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaSuburban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction
  • New construction,
  • Renovation
  • Renovation
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area
  • New Development
  • New Development,
  • Retrofitting Area
  • Retrofitting Area
  • New Development
B1P006: Year of construction
B1P006: Year of construction
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential016.931
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential14000300
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention00000000
B1P012: Population density after intervention
B1P012: Population density after intervention0.04137931034482800120000
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnononoyesnonono
B1P013 - Residential: Specify the sqm [m²]25,000
B1P013: Officeyesnononoyesnonono
B1P013 - Office: Specify the sqm [m²]10,000
B1P013: Industry and Utilityyesnononoyesnonono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononononononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnononoyesnononono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononononononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasyesnonononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnonoyesyesnoyesno
B1P014 - Residential: Specify the sqm [m²]25.0002394
B1P014: Officeyesnononoyesnonono
B1P014 - Office: Specify the sqm [m²]10.000
B1P014: Industry and Utilitynonononoyesnonono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonononononono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononononononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnononononononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnonononononono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
B2P003: Scale of action
B2P003: ScaleDistrictVirtualDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IRECKristian Olesen
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
  • Strategic,
  • Private
  • Civic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
  • Academia,
  • Private
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P001: Presence of integrated urban strategies and plans4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
C1P002: Urban re-development of existing built environment5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Economic growth need4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
C1P002: Territorial and market attractiveness3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Lack of public participation4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Regulatory instability3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Non-effective regulations3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Insufficient or insecure financial incentives5 - Very important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Deficient planning3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Grid congestion, grid instability3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Low acceptance of new projects and technologies3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Lack of trust beyond social network3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Rebound effect3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Economic crisis4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P011: Energy price distortion3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Business process management
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Construction/implementation
C1P012: Urban Services providers
  • Planning/leading,
  • Construction/implementation
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • None
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
  • None
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)