Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Uncompare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Istanbul, Ozyegin University Campus
Bolzano, Sinfonia
Borlänge, Rymdgatan’s Residential Portfolio
Trondheim, Svartlamon
Lubia (Soria), CEDER-CIEMAT
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeIstanbul, Ozyegin University CampusBolzano, SinfoniaBorlänge, Rymdgatan’s Residential PortfolioTrondheim, SvartlamonLubia (Soria), CEDER-CIEMAT
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononono
PED relevant case studyyesyesyesyesnono
PED Lab.nonononoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesno
Annual energy surplusnononoyesnono
Energy communityyesnonoyesyesno
Circularitynononononono
Air quality and urban comfortnoyesyesnonoyes
Electrificationnoyesnoyesnono
Net-zero energy costnononononono
Net-zero emissionnononononoyes
Self-sufficiency (energy autonomous)nononononoyes
Maximise self-sufficiencynononoyesnono
Othernoyesyesnonono
Other (A1P004)almost nZEB districtEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseCompletedPlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/2110/2401/1411/2411/19
A1P007: End Date
A1P007: End date01/3010/2812/2003/2612/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • http://www.ceder.es/redes-inteligentes,
          • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
          • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
          A1P011: Geographic coordinates
          X Coordinate (longitude):12.9205429.25830011.34344715.39449510.42-2.508
          Y Coordinate (latitude):56.6519441.03060046.48231060.48660963.436341.603
          A1P012: Country
          A1P012: CountrySwedenTurkeyItalySwedenNorwaySpain
          A1P013: City
          A1P013: CityHalmstadIstanbulBolzanoBorlängeTrondheimLubia - Soria
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DwbCfaCfaDsbCfbCfb
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicGeographicVirtualGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPrivatePrivateMixedPrivatePublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED25015106
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]3700
          A1P020: Total ground area
          A1P020: Total ground area [m²]285.400994532006400000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesyesnononono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonononoyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonoyesnonono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesyesnononono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononoyes
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonoyesnonono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherGreen financing
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]10.02
          Contact person for general enquiries
          A1P026: NameMarkus OlofsgårdCem KeskinChristoph GollnerJingchun ShenTatiana González Grandón; Raymundo E. Torres-OlguinDr. Raquel Ramos
          A1P027: OrganizationAFRYCenter for Energy, Environment and Economy, Ozyegin UniversityFFGHögskolan DalarnaNTNUCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)
          A1P028: AffiliationOtherResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityResearch Center / University
          A1P028: Other
          A1P029: Emailmarkus.olofsgard@afry.comcem.keskin@ozyegin.edu.trchristoph.gollner@ffg.atjih@du.setatiana.c.g.grandon@ntnu.noraquel.ramos@ciemat.es
          Contact person for other special topics
          A1P030: NameM. Pınar MengüçXingxing ZhangRaymundo E. Torres-OlguinDr. Oscar Seco
          A1P031: Emailpinar.menguc@ozyegin.edu.trxza@du.seraymundo.torres-olguin@sintef.nooscar.seco@ciemat.es
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy flexibility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Digital technologies,
          • Indoor air quality
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergencies
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.677714
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0365690
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]00
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]09
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesnononoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]
          A2P011: Windnononononoyes
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononoyes
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononoyes
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononoyesnono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononoyes
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononononoyes
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononoyes
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnononononoyes
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnononononoyes
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]3.50.318
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononoyesnono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnoyesnononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
          A2P018: Windnononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononoyesnono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononoyesnono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000.5383957219251300
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagram
          A2P022: Educationnone
          A2P022: Mobilitynone
          A2P022: Energynormalized CO2/GHG & Energy intensityYes
          A2P022: Water
          A2P022: Economic developmentcost of excess emissions
          A2P022: Housing and Community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnonoyesyesnoyes
          A2P023: Wind Turbinesnoyesnononoyes
          A2P023: Geothermal energy systemnononoyesnoyes
          A2P023: Waste heat recoverynononoyesnoyes
          A2P023: Waste to energynononononono
          A2P023: Polygenerationnononononoyes
          A2P023: Co-generationnoyesnononoyes
          A2P023: Heat Pumpnoyesyesyesnoyes
          A2P023: Hydrogennononononoyes
          A2P023: Hydropower plantnononononoyes
          A2P023: Biomassnononononoyes
          A2P023: Biogasnononononono
          A2P023: OtherBatteries
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyes
          A2P024: Energy management systemnoyesnonoyesyes
          A2P024: Demand-side managementyesyesnononoyes
          A2P024: Smart electricity gridyesnoyesnonoyes
          A2P024: Thermal Storagenononoyesnoyes
          A2P024: Electric Storagenoyesnononoyes
          A2P024: District Heating and Coolingnoyesyesyesnoyes
          A2P024: Smart metering and demand-responsive control systemsyesyesnononoyes
          A2P024: P2P – buildingsnonononoyesno
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnononoyesnoyes
          A2P025: Energy efficiency measures in historic buildingsnononononono
          A2P025: High-performance new buildingsnoyesnononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnoyesno
          A2P025: Urban data platformsnonononoyesno
          A2P025: Mobile applications for citizensnononononono
          A2P025: Building services (HVAC & Lighting)noyesnoyesnoyes
          A2P025: Smart irrigationnoyesnononono
          A2P025: Digital tracking for waste disposalnononononono
          A2P025: Smart surveillancenoyesnononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononono
          A2P026: e-Mobilitynoyesyesnonono
          A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononono
          A2P026: Car-free areanoyesnononoyes
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesNoYes
          A2P028: If yes, please specify and/or enter notesIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYesNoNo
          A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesCarbon and Energy NeutralityIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Local trading
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Local trading,
          • Existing incentives
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • District Energy plans,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Energy Neutral
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Low Emission Zone
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.Borlänge city has committed to become the carbon-neutral city by 2030.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaSuburban areaUrban areaRural
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Retrofitting Area
          • Retrofitting Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction20241990
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential98006
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential98006
          B1P011: Population density before intervention
          B1P011: Population density before intervention0340000
          B1P012: Population density after intervention
          B1P012: Population density after intervention034.33777154870400.01065862242332800
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesyesnono
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnoyesnononono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasyesnonononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononoyesnono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesyesnono
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnononono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononoyesnono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
          B2P003: Scale of action
          B2P003: ScaleDistrictDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabResearch center/University
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Industrial
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Equipment
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P001: Storage systems and E-mobility market penetration5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
          C1P001: Decreasing costs of innovative materials1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important
          C1P001: Presence of integrated urban strategies and plans5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
          C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P002: Urban re-development of existing built environment1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P002: Economic growth need1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P002: Territorial and market attractiveness1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
          C1P005: Regulatory instability1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Non-effective regulations1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)2 - Slightly important3 - Moderately important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P007: Deficient planning3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P007: Lack of well-defined process1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
          C1P007: Inaccuracy in energy modelling and simulation5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
          C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
          C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important
          C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P008: Rebound effect1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
          C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P009: Lack of awareness among authorities3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
          C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
          C1P010: Risk and uncertainty2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
          C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
          C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
          C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Design/demand aggregation
          C1P012: Financial/Funding
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Planning/leading
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • None
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)