Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Romania, Alba Iulia PED
City of Espoo, Espoonlahti district, Lippulaiva block
Bologna, Pilastro-Roveri district
Lubia (Soria), CEDER-CIEMAT
Lund, Brunnshög district
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Leipzig, Baumwollspinnerei district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthRomania, Alba Iulia PEDCity of Espoo, Espoonlahti district, Lippulaiva blockBologna, Pilastro-Roveri districtLubia (Soria), CEDER-CIEMATLund, Brunnshög districtAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkLeipzig, Baumwollspinnerei district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonoyesnoyes
PED relevant case studynononoyesnonoyesno
PED Lab.yesnononoyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesnoyesyesyes
Annual energy surplusyesyesnononoyesnono
Energy communityyesyesnoyesnoyesnono
Circularityyesnonononoyesnono
Air quality and urban comfortnoyesnonoyesyesnoyes
Electrificationnoyesnononoyesnoyes
Net-zero energy costnononononononono
Net-zero emissionyesnononoyesyesnono
Self-sufficiency (energy autonomous)noyesnonoyesnonono
Maximise self-sufficiencynoyesyesnononoyesno
Othernononononoyesnoyes
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseIn operationPlanning PhaseImplementation PhaseIn operationPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1801/2406/1809/1911/19201511/22
A1P007: End Date
A1P007: End date12/2312/2603/2210/2312/23204011/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
    A1P011: Geographic coordinates
    X Coordinate (longitude):6.53512123.58011209802323524.654311.397323-2.50813.23246940076959910.00712.318458
    Y Coordinate (latitude):53.23484646.07701527868011560.149144.50710641.60355.7198979220719357.04102851.326492
    A1P012: Country
    A1P012: CountryNetherlandsRomaniaFinlandItalySpainSwedenDenmarkGermany
    A1P013: City
    A1P013: CityGroningenAlba IuliaEspooBolognaLubia - SoriaLundAalborgLeipzig
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfaDfbDfbCfaCfbDfbDfbDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalFunctionalGeographicGeographicGeographicGeographicVirtualFunctional
    OtherGeographicGeographic
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedPublicPrivateMixedPublicPublicPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED769196262002
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1.01112000150000017000
    A1P020: Total ground area
    A1P020: Total ground area [m²]17.1328423.451650007800000640000015000003130800030000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area00100101
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnoyesnonoyesnono
    A1P022a: Add the value in EUR if available [EUR]99999999
    A1P022b: Financing - PRIVATE - ESCO schemenononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Otheryesnonononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnoyesnononoyesnono
    A1P022d: Add the value in EUR if available [EUR]1000000
    A1P022e: Financing - PUBLIC - National fundingyesyesnoyesnoyesnono
    A1P022e: Add the value in EUR if available [EUR]30000000
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesnoyesnono
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingyesyesnoyesnoyesnono
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesyesnoyesnono
    A1P022i: Add the value in EUR if available [EUR]3088752000000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesyesnonono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Other
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Other
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: OtherBoosting sustainability for public schoolsWorld class sustainable living and research environmentsSustainable and replicable business models regarding renewable energy systems
    A1P024: More comments:
    A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
    Contact person for general enquiries
    A1P026: NameJasper Tonen, Elisabeth KoopsTudor DrâmbăreanElina EkelundProf. Danila LongoDr. Raquel RamosMarkus PaulssonKristian OlesenSimon Baum
    A1P027: OrganizationMunicipality of GroningenMunicipality of Alba IuliaCitycon OyjUniversity of Bologna - Architecture DepartmentCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)City of LundAalborg UniversityCENERO Energy GmbH
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOther
    A1P028: OtherMaria Elena SeemannCENERO Energy GmbH
    A1P029: EmailJasper.tonen@groningen.nltudor.drambarean@apulum.roElina.ekelund@citycon.comraquel.ramos@ciemat.esmarkus.paulsson@lund.seKristian@plan.aau.dksib@cenero.de
    Contact person for other special topics
    A1P030: NameMaria-Elena SeemannElina EkelundDr. Oscar SecoEva DalmanAlex Søgaard MorenoSimon Baum
    A1P031: Emailmaria.seemann@apulum.roapulElina.ekelund@citycon.comoscar.seco@ciemat.eseva.dalman@lund.seasm@aalborg.dksib@cenero.de
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Stakeholder engagement, expert energy system analysis, future scenarios
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesYesYesNoNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYesNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Mobility is not included in the energy model.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.9825.5252181.65
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.0484415.830148
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnoyesyesyesyesyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.54
    A2P011: Windnonononoyesyesyesno
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononoyesnonono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononoyesnonono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononoyesno
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnoyesnoyesnonono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalyesnonoyesyesnonono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatyesnonoyesyesnonono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
    A2P012: Waste heat+HPyesnononoyesyesyesno
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200300
    A2P012: Biomass_peat_heatnononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thyesnonononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononoyesnonono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernoyesnononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersOnly PVs - 940 PVs on the main buildingVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.00004844111.36202.421
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.0001133315.76399
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernoyesnonononoyesno
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononononoyesnono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnononononoyesnono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononoyesnono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononoyesnono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernoyesyesnonononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernoyesnononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary001.053231939163500000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]0
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securityyes
    A2P022: Healthyes
    A2P022: Educationyes
    A2P022: MobilityyesMaximum 1/3 transport with car
    A2P022: EnergyyesOn-site energy ratioLocal energy production 150% of energy needapply
    A2P022: Wateryes
    A2P022: Economic developmentyes
    A2P022: Housing and Community50% rental apartments and 50% owner apartments
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyesno
    A2P023: Solar thermal collectorsyesyesnoyesyesyesyesno
    A2P023: Wind Turbinesnonononoyesyesnono
    A2P023: Geothermal energy systemyesnoyesyesyesyesnono
    A2P023: Waste heat recoveryyesnoyesnoyesyesyesno
    A2P023: Waste to energyyesnonoyesnonoyesno
    A2P023: Polygenerationnoyesnonoyesyesnono
    A2P023: Co-generationnoyesnoyesyesnonono
    A2P023: Heat Pumpyesyesnoyesyesyesyesno
    A2P023: Hydrogennonononoyesyesnono
    A2P023: Hydropower plantnonononoyesnonono
    A2P023: Biomassnonononoyesnoyesno
    A2P023: Biogasnononononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesnono
    A2P024: Energy management systemyesyesyesnoyesyesyesno
    A2P024: Demand-side managementyesyesnonoyesyesyesno
    A2P024: Smart electricity gridnoyesyesnoyesyesyesno
    A2P024: Thermal Storageyesnoyesnoyesyesyesno
    A2P024: Electric Storageyesyesyesyesyesyesyesno
    A2P024: District Heating and Coolingyesnonoyesyesyesyesno
    A2P024: Smart metering and demand-responsive control systemsyesyesnonoyesyesyesno
    A2P024: P2P – buildingsnoyesnononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesnoyesyesnoyesno
    A2P025: Energy efficiency measures in historic buildingsyesnonononononono
    A2P025: High-performance new buildingsyesnoyesyesnoyesnono
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesyesnoyesnono
    A2P025: Urban data platformsyesyesnononoyesnono
    A2P025: Mobile applications for citizensnononoyesnononono
    A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesnono
    A2P025: Smart irrigationnononononononono
    A2P025: Digital tracking for waste disposalnononoyesnoyesnono
    A2P025: Smart surveillancenononoyesnonoyesno
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesyesnoyesnono
    A2P026: e-Mobilityyesyesyesyesnoyesnono
    A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnono
    A2P026: Car-free areanonononoyesyesnono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaWalkabilityTest-Concept for bidirectional charging.
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate => Energy efficiency class B (2018 version)Energy Performance Certificate for each dwellingIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingMiljöbyggnad silver/guld
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesYesNoNoNoNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of MayorsRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.City strategy: Net climate neutrality 2030Reduction of 1018000 tons CO2 by 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Biogas
    • Biogas
    A3P003: OtherNo gas grid in Brunnshög
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating systemFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Blockchain
    • Open data business models,
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab
    • Innovative business models
    • Innovative business models,
    • PPP models,
    • Circular economy models,
    • Demand management Living Lab,
    • Existing incentives
    • Demand management Living Lab
    • PPP models,
    • Other
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • Other
    A3P006: OtherAttractivenesoperational savings through efficiency measures
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Digital Inclusion,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Policy Forums,
    • Citizen/owner involvement in planning and maintenance
    • Behavioural Change / End-users engagement
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Building / district Certification
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • District Energy plans,
    • Building / district Certification
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Cool Materials,
    • Nature Based Solutions (NBS)
    • Other
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction,
    • Greening strategies
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Net zero carbon footprint
    • Other
    A3P009: OtherCarbon free in terms of energyPositive Energy Balance for the demo site
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionPositive energy districtLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaRuralUrban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • Renovation
    • New construction
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • New Development
    • Retrofitting Area
    • Preservation Area
    B1P006: Year of construction
    B1P006: Year of construction19762022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential016.931
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential18000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential2000
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential22000
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000000.02666666666666700
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnononoyesnononono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenononoyesnoyesnono
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynononoyesnononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonoyesyesnononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnoyesnoyesnononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonoyesyesnoyesnono
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalnononoyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononoyesnononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononoyesnono
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesyesnoyesnono
    B1P014 - Residential: Specify the sqm [m²]600000
    B1P014: Officenononoyesnoyesnono
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynononoyesnononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonoyesyesnononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesnoyesnoyesnono
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasnononoyesnononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnononoyesnoyesnono
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnononoyesnononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.An ongoing process and dialogue with local stakeholders to determine the future development of the area.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.CEDER will follow an integrative approach including technology for a permanent installation.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esKristian Olesen
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    • Strategic
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Industrial
    • Academia,
    • Private
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Energy storage,
    • Energy networks,
    • Efficiency measures,
    • Information and Communication Technologies (ICT),
    • Ambient measures,
    • Social interactions
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    • Monitoring and evaluation infrastructure,
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Equipment
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important4 - Important2 - Slightly important5 - Very important2 - Slightly important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
    C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
    C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important
    C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important5 - Very important5 - Very important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important2 - Slightly important
    C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important4 - Important5 - Very important5 - Very important2 - Slightly important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important5 - Very important2 - Slightly important
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important4 - Important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
    C1P002: Urban re-development of existing built environment4 - Important2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important
    C1P002: Economic growth need2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important
    C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
    C1P002: Energy autonomy/independence2 - Slightly important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important
    C1P003: Lack of public participation1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
    C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important
    C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important2 - Slightly important
    C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
    C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers3 - Moderately important?
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Deficient planning2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant5 - Very important
    C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important2 - Slightly important
    C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important5 - Very important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important2 - Slightly important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important2 - Slightly important
    C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
    C1P008: Rebound effect2 - Slightly important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important4 - Important2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
    C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important2 - Slightly important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important
    C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
    C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs2 - Slightly important4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important2 - Slightly important3 - Moderately important
    C1P010: Economic crisis1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important5 - Very important5 - Very important
    C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important5 - Very important2 - Slightly important4 - Important4 - Important
    C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important2 - Slightly important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important2 - Slightly important
    C1P011: Energy price distortion4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important2 - Slightly important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Design/demand aggregation
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • None
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • None
    • None
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)