Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Freiburg, Waldsee
Graz, Reininghausgründe
Uden, Loopkantstraat
Riga, Ķīpsala, RTU smart student city
Maia, Sobreiro Social Housing
Leon, Former Sugar Factory district
Istanbul, Ozyegin University Campus
Leipzig, Baumwollspinnerei district
Ankara, Çamlık District
Bærum, Eiksveien 116
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthFreiburg, WaldseeGraz, ReininghausgründeUden, LoopkantstraatRiga, Ķīpsala, RTU smart student cityMaia, Sobreiro Social HousingLeon, Former Sugar Factory districtIstanbul, Ozyegin University CampusLeipzig, Baumwollspinnerei districtAnkara, Çamlık DistrictBærum, Eiksveien 116Borlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesnoyesnoyesyesnono
PED relevant case studynononoyesnononoyesnoyesyesyes
PED Lab.yesnonononoyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesnoyesyesyesyesyes
Annual energy surplusyesnonoyesnonoyesnonoyesnoyes
Energy communityyesyesnonoyesnonononoyesnoyes
Circularityyesnonononononononononono
Air quality and urban comfortnononononononoyesyesnonono
Electrificationnoyesnoyesnononoyesyesyesyesyes
Net-zero energy costnononononononononoyesyesno
Net-zero emissionyesyesnononononononoyesyesno
Self-sufficiency (energy autonomous)nonononoyesnonononononono
Maximise self-sufficiencynonononoyesyesyesnonoyesnoyes
Othernononononononoyesyesnonono
Other (A1P004)almost nZEB districtNet-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseImplementation PhaseIn operationPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning PhaseCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date12/1811/21201906/1701/2410/2112/1810/2410/2201/18
A1P007: End Date
A1P007: End date12/2311/24202505/2312/2610/2412/2310/2809/2506/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Meteorological open data
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
    •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
          A1P011: Geographic coordinates
          X Coordinate (longitude):6.5351217.88585713584291715.4074405.619124.08168339-8.373557-5.58479529.25830012.31845832.79536910.533315.394495
          Y Coordinate (latitude):53.23484647.98653520708004547.060751.660656.9524595641.13580442.59339141.03060051.32649239.88181259.910060.486609
          A1P012: Country
          A1P012: CountryNetherlandsGermanyAustriaNetherlandsLatviaPortugalSpainTurkeyGermanyTurkeyNorwaySweden
          A1P013: City
          A1P013: CityGroningenFreiburg im BreisgauGrazUdenRigaMaiaLeonIstanbulLeipzigAnkaraBærumBorlänge
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfaCfbDfbCfbCfbCsbCsbCfaDfbDsbDfbDsb
          A1P015: District boundary
          A1P015: District boundaryFunctionalVirtualGeographicGeographicGeographicVirtualGeographicGeographicFunctionalGeographicOtherGeographic
          OtherGeographicBuilding
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivatePublicPublicMixedPrivatePrivatePublicMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED729411001152221152257110
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]1.01284070236017000016.0690017000226003700
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.13249200001000000386011926473.14569285.40030000508009945
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area000110001000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnoyesyesnononoyesnononono
          A1P022a: Add the value in EUR if available [EUR]7804440
          A1P022b: Financing - PRIVATE - ESCO schemenononononononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Otheryesnonononoyesnononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingyesnoyesnonoyesnononononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingyesyesyesnononononononoyesno
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesyesnonoyesyesnoyesnoyesnono
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononononononoyesnono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Job creation,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local and sustainable production
          • Other
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          A1P023: OtherSustainable and replicable business models regarding renewable energy systemsSocial housing
          A1P024: More comments:
          A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044401
          Contact person for general enquiries
          A1P026: NameJasper Tonen, Elisabeth KoopsDr. Annette SteingrubeKatharina SchwarzTonje Healey TrulsrudJudith StiekemaAdelina RodriguesBegoña Gonzalo OrdenCem KeskinSimon BaumProf. Dr. İpek Gürsel DİNOJohn Einar ThommesenJingchun Shen
          A1P027: OrganizationMunicipality of GroningenFraunhofer Institute for solar energy systemsStadtLABOR, Innovationen für urbane Lebensqualität GmbHNorwegian University of Science and Technology (NTNU)OASCMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of LeonCenter for Energy, Environment and Economy, Ozyegin UniversityCENERO Energy GmbHMiddle East Technical UniversitySINTEF CommunityHögskolan Dalarna
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryResearch Center / UniversityOtherMunicipality / Public BodiesOtherResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / University
          A1P028: Othernot for profit private organisationMunicipality of Leon - ILRUVCENERO Energy GmbH
          A1P029: EmailJasper.tonen@groningen.nlAnnette.Steingrube@ise.fraunhofer.dekatharina.schwarz@stadtlaborgraz.attonje.h.trulsrud@ntnu.nojudith@oascities.orgdscm.adelina@cm-maia.ptbegona.gonzalo@aytoleon.escem.keskin@ozyegin.edu.trsib@cenero.deipekg@metu.edu.trjohn.thommesen@sintef.nojih@du.se
          Contact person for other special topics
          A1P030: NameHans SchnitzerCarolina Gonçalves (AdEPorto)Monica Prada CorralM. Pınar MengüçSimon BaumAssoc. Prof. Onur TaylanJohn Einar ThommesenXingxing Zhang
          A1P031: Emailhans.schnitzer@stadtlaborgraz.atcarolinagoncalves@adeporto.euMonica.Prada@ilruv.espinar.menguc@ozyegin.edu.trsib@cenero.deotaylan@metu.edu.trjohn.thommesen@sintef.noxza@du.se
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Water use,
          • Indoor air quality,
          • Other
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy production,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          A2P001: OtherUrban Management; Air Quality
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy system modelingEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesNoYesNoNoNoYesYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoYesNoNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)not includedThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Not included, the campus is a non car area except emergenciesMobility is not included in the calculations.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.3135.7150.14880003.491.653.4460.6777
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.3331.760.10950000.570.5280.03656
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]00
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVnonoyesyesnoyesyesyesyesyesnono
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.243.4240
          A2P011: Windnonononoyesnonononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononoyesnonononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
          A2P011: Biomass_elnononononononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononoyesnoyesnonononoyes
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.280.01818
          A2P011: Othernononononononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnoyesyesnononononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalyesnoyesnonoyesnononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatyesnononoyesnonononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
          A2P012: Waste heat+HPyesnoyesnonononononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thyesnononononoyesnonononoyes
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnononononononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononoyesnonononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers53 MW PV potential in all three quarters; no other internal renewable energy potentials knownGroundwater (used for heat pumps)*Annual energy use below is presentedin primary energy consumptionConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]132.50.1943.52.4213.9760.318
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.03680.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononoyesnonononoyesnono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononononononoyes
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnonononoyesnononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
          A2P018: Windnonoyesnonononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononoyesnonononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononononononoyes
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonoyesnonononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonoyesnonononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonoyesnonononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononononononoyes
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000000000000.53839572192513
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036-0.000436.93
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safetynone
          A2P022: HealthHealthy communitythermal comfort diagram
          A2P022: Educationnone
          A2P022: MobilityyesxSustainable mobilitynone
          A2P022: EnergyyesxNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionapplynormalized CO2/GHG & Energy intensity
          A2P022: Waterx
          A2P022: Economic developmentxcapital costs, operational cots, overall economic performance (5 KPIs)cost of excess emissions
          A2P022: Housing and Communityyesxdemographic composition, diverse community, social cohesion
          A2P022: Waste
          A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesnoyesyesyesnoyesnoyes
          A2P023: Solar thermal collectorsyesyesnononoyesyesnonononoyes
          A2P023: Wind Turbinesnononononononoyesnononono
          A2P023: Geothermal energy systemyesyesnoyesnononononononoyes
          A2P023: Waste heat recoveryyesyesyesnonononononononoyes
          A2P023: Waste to energyyesyesnononononononononono
          A2P023: Polygenerationnononononononononononono
          A2P023: Co-generationnoyesnononononoyesnononono
          A2P023: Heat Pumpyesyesyesyesnoyesyesyesnoyesnoyes
          A2P023: Hydrogennoyesnononononononononono
          A2P023: Hydropower plantnoyesnonononoyesnonononono
          A2P023: Biomassnoyesnononononononononono
          A2P023: Biogasnoyesnononononononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnoyesyesyesyesnononoyes
          A2P024: Energy management systemyesyesnoyesyesyesyesyesnononono
          A2P024: Demand-side managementyesyesnoyesyesnoyesyesnononono
          A2P024: Smart electricity gridnoyesnonoyesnonononononono
          A2P024: Thermal Storageyesyesyesnoyesnonononononoyes
          A2P024: Electric Storageyesyesnonoyesyesnoyesnononono
          A2P024: District Heating and Coolingyesyesyesnoyesnonoyesnononoyes
          A2P024: Smart metering and demand-responsive control systemsyesyesnoyesyesyesnoyesnononono
          A2P024: P2P – buildingsnoyesnonononoyesnonononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnononoyesyesnonoyesnoyes
          A2P025: Energy efficiency measures in historic buildingsyesyesnonononoyesnonononono
          A2P025: High-performance new buildingsyesnoyesyesnononoyesnononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnonoyesnononononono
          A2P025: Urban data platformsyesyesnonoyesnoyesnonononono
          A2P025: Mobile applications for citizensnonoyesnoyesnonononononono
          A2P025: Building services (HVAC & Lighting)nononoyesyesyesnoyesnoyesnoyes
          A2P025: Smart irrigationnonoyesnonononoyesnononono
          A2P025: Digital tracking for waste disposalnononononoyesnononononono
          A2P025: Smart surveillancenononononononoyesnononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)noyesyesnonoyesyesnonononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesnonononononononono
          A2P026: e-Mobilityyesyesyesnonoyesyesyesnononono
          A2P026: Soft mobility infrastructures and last mile solutionsnoyesyesnononoyesyesnononono
          A2P026: Car-free areanonoyesnonononoyesnononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementTest-Concept for bidirectional charging.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoYesYesNoYesYesYesNoNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are soldEPC = 0, energy neutral buildingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYesNoNoNoNoYesNoNo
          A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Other
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Biogas
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesCarbon and Energy NeutralityAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Nursing home for people with special needsIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Blockchain
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • PPP models,
          • Local trading
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • Other
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Affordability,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • City Vision 2050,
          • Building / district Certification
          • Digital twinning and visual 3D models
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Energy Neutral
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Other
          • Energy Neutral,
          • Low Emission Zone
          • Other
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          A3P009: OtherPositive Energy Balance for the demo siteEnergy Positive, Low Emission ZonePEB
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.PEBThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.PED-ACT project.Borlänge city has committed to become the carbon-neutral city by 2030.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaUrban areaUrban areaSuburban areaSuburban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • New construction
          • New construction
          • New construction,
          • Renovation
          • Renovation
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • New Development
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area,
          • Preservation Area
          • Retrofitting Area
          • Preservation Area
          • Retrofitting Area
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction2025202419861990
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential58980100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential589810000100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential098006
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential98006
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000340000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00.00119878048780490.01000034.3377715487040000.010658622423328
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesnonononoyesnonoyesnoyes
          B1P013 - Residential: Specify the sqm [m²]508004360
          B1P013: Officenoyesnononononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynoyesyesnonononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnoyesnononononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnoyesnononononoyesnononono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasnoyesyesnonononononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnoyesnononononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononoyesnonononoyes
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesyesyesnonoyesnonoyesnoyes
          B1P014 - Residential: Specify the sqm [m²]2394508004360
          B1P014: Officenoyesyesnonononononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynoyesnononononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnoyesyesnonononononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesyesnonononoyesnononono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnoyesyesnonononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnoyesyesnonononononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononoyesnonononoyes
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
          B2P003: Scale of action
          B2P003: ScaleDistrictVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
          C1P001: Decreasing costs of innovative materials5 - Very important2 - Slightly important2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important5 - Very important
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
          C1P001: Availability of RES on site (Local RES)4 - Important4 - Important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important2 - Slightly important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need2 - Slightly important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment4 - Important2 - Slightly important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important
          C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
          C1P003: Lack of public participation1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P003: Fragmented and or complex ownership structure4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important
          C1P005: Non-effective regulations3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 12 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
          C1P007: Deficient planning2 - Slightly important4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P008: Rebound effect2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
          C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
          C1P010: Economic crisis1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P010: Risk and uncertainty3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P010: Limited access to capital and cost disincentives2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P011: Energy price distortion4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Analyst, ICT and Big Data
          • Design/demand aggregation,
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Business process management
          • Planning/leading
          • None
          • None
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Real Estate developers
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: End‐users/Occupants/Energy Citizens
          • None
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Other
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)