Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Lund, Brunnshög district
Amsterdam, Buiksloterham PED
Espoo, Kera
Uden, Loopkantstraat
Aarhus, Brabrand
Graz, Reininghausgründe
Borlänge, Rymdgatan’s Residential Portfolio
Tampere, Ilokkaanpuisto district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthLund, Brunnshög districtAmsterdam, Buiksloterham PEDEspoo, KeraUden, LoopkantstraatAarhus, BrabrandGraz, ReininghausgründeBorlänge, Rymdgatan’s Residential PortfolioTampere, Ilokkaanpuisto district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnoyesyesnono
PED relevant case studynononoyesyesyesnoyesyes
PED Lab.yesnonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyes
Annual energy surplusyesyesyesnoyesyesnoyesno
Energy communityyesyesyesnonoyesnoyesyes
Circularityyesyesyesyesnonononono
Air quality and urban comfortnoyesnonononononono
Electrificationnoyesyesnoyesnonoyesyes
Net-zero energy costnonononononononono
Net-zero emissionyesyesyesnonoyesnonoyes
Self-sufficiency (energy autonomous)nonononononononoyes
Maximise self-sufficiencynononononononoyesno
Othernoyesnonononononono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationImplementation PhasePlanning PhaseIn operationPlanning PhaseImplementation PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date12/18201511/1901/1506/1701/24201904/14
A1P007: End Date
A1P007: End date12/23204010/2512/3505/2312/26202510/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
A1P009: OtherGIS open dataset is under constructionhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
      • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512113.2324694007695994.904124.753777785.619110.21340515.40744015.39449523.798083
      Y Coordinate (latitude):53.23484655.7198979220719352.367660.2162222251.660656.14962847.060760.48660961.464088
      A1P012: Country
      A1P012: CountryNetherlandsSwedenNetherlandsFinlandNetherlandsDenmarkAustriaSwedenFinland
      A1P013: City
      A1P013: CityGroningenLundAmsterdamEspooUdenAarhusGrazBorlängeTampere
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaDfbCfbDfbCfbCfbDfbDsbDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicFunctionalGeographicGeographicGeographicGeographicGeographicVirtual
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedPrivateMixedMixedMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED7200601100106
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.01150000028500236037009.000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.132150000058000038601000000994525.000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area010010000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesyesyesnoyesnoyesnoyes
      A1P022a: Add the value in EUR if available [EUR]999999997804440
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnononononononoyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonononononono
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingyesyesnonononoyesnoyes
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononononono
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingyesyesnonononoyesnono
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesyesnonoyesnonoyes
      A1P022i: Add the value in EUR if available [EUR]2000000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Boosting local and sustainable production
      A1P023: OtherWorld class sustainable living and research environmentsCircular economy
      A1P024: More comments:
      A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsMarkus PaulssonOmar ShafqatJoni MäkinenTonje Healey TrulsrudJohanne Bräuner Nygaard HansenKatharina SchwarzJingchun ShenSenior Scientist Terttu Vainio
      A1P027: OrganizationMunicipality of GroningenCity of LundAmsterdam University of Applied SciencesCity of EspooNorwegian University of Science and Technology (NTNU)ITK, the city of AarhusStadtLABOR, Innovationen für urbane Lebensqualität GmbHHögskolan DalarnaVTT Technical Research Centre of Finland
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesSME / IndustryResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: EmailJasper.tonen@groningen.nlmarkus.paulsson@lund.seo.shafqat@hva.nljoni.makinen@espoo.fitonje.h.trulsrud@ntnu.nohjobr@aarhus.dkkatharina.schwarz@stadtlaborgraz.atjih@du.seterttu.vainio@vtt.fi
      Contact person for other special topics
      A1P030: NameEva DalmanOmar ShafqatHans SchnitzerXingxing Zhang
      A1P031: Emaileva.dalman@lund.seo.shafqat@hva.nlhans.schnitzer@stadtlaborgraz.atxza@du.se
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Digital technologies
      • Energy efficiency,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Water use,
      • Indoor air quality,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      A2P001: OtherWalkability and bikingUrban Management; Air Quality
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.City vision, Innovation Ateliers- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesNoYesNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesNoNoNoNoYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoYesYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.not includedNot determined yet- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.32554.50.1480.67770
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.333019.40.1090.036560.7
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesyesyesnoyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]40.0580.7
      A2P011: Windnoyesnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonoyesnononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononoyesno
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernonononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnoyesnoyesnoyesnoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnononononoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatyesnoyesnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesyesyesyesnonoyesnono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonononononoyesno
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.*Annual energy use below is presentedin primary energy consumptionGroundwater (used for heat pumps)PV plant of energy community locates outside of the city, not on the slot
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]78.80.1940.3180.7
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]15.40.03680.2055
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonoyesnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonoyesnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononoyesno
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesyesnononoyesnono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnoyesyesnononoyesnono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesyesnononoyesnono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnoyesyesnononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonoyesnononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonoyesnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononoyesno
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonoyesnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonoyesnononoyesnono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonoyesnononoyesnono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonoyesnononoyesnono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonoyesnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonoyesnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonoyesnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononoyesno
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000.538395721925130
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]250450000-0.000430.0366.930
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safetynone
      A2P022: HealthHealthy communitythermal comfort diagram
      A2P022: Educationnone
      A2P022: MobilityMaximum 1/3 transport with carSustainable mobilityxnone
      A2P022: EnergyLocal energy production 150% of energy needNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionxnormalized CO2/GHG & Energy intensity
      A2P022: Waterx
      A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)xcost of excess emissions
      A2P022: Housing and Community50% rental apartments and 50% owner apartmentsdemographic composition, diverse community, social cohesionx
      A2P022: Waste
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesnoyesyesyes
      A2P023: Solar thermal collectorsyesyesnononononoyesno
      A2P023: Wind Turbinesnoyesnonononononono
      A2P023: Geothermal energy systemyesyesyesnoyesnonoyesyes
      A2P023: Waste heat recoveryyesyesyesyesnonoyesyesyes
      A2P023: Waste to energyyesnoyesnononononono
      A2P023: Polygenerationnoyesnonononononono
      A2P023: Co-generationnonononononononono
      A2P023: Heat Pumpyesyesyesyesyesnoyesyesyes
      A2P023: Hydrogennoyesnonononononono
      A2P023: Hydropower plantnonononononononono
      A2P023: Biomassnonoyesnononononono
      A2P023: Biogasnonoyesnononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnonoyesyesyes
      A2P024: Energy management systemyesyesyesyesyesnononoyes
      A2P024: Demand-side managementyesyesyesyesyesnononoyes
      A2P024: Smart electricity gridnoyesyesyesnonononono
      A2P024: Thermal Storageyesyesyesnononoyesyesno
      A2P024: Electric Storageyesyesyesnononononono
      A2P024: District Heating and Coolingyesyesyesyesnonoyesyesno
      A2P024: Smart metering and demand-responsive control systemsyesyesyesnoyesnononoyes
      A2P024: P2P – buildingsnonoyesnononononono
      A2P024: OtherElectric grid as virtual battery
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesnonononoyesno
      A2P025: Energy efficiency measures in historic buildingsyesnoyesnononononono
      A2P025: High-performance new buildingsyesyesyesyesyesnoyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesyesnonoyesnono
      A2P025: Urban data platformsyesyesyesyesnonononono
      A2P025: Mobile applications for citizensnonoyesnononoyesnoyes
      A2P025: Building services (HVAC & Lighting)noyesyesyesyesnonoyesyes
      A2P025: Smart irrigationnonoyesnononoyesnono
      A2P025: Digital tracking for waste disposalnoyesyesnononononono
      A2P025: Smart surveillancenonononononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesyesnonoyesnono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesyesnonoyesnono
      A2P026: e-Mobilityyesyesyesyesnonoyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesyesyesnonoyesnono
      A2P026: Car-free areanoyesyesnononoyesnono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateMiljöbyggnad silver/guldEPC = 0, energy neutral buildingEnergieausweis mandatory if buildings/ flats/ apartments are sold
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoYesNoNo
      A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      A3P003: OtherNo gas grid in Brunnshög
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • PPP models,
      • Other
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • PPP models,
      • Circular economy models
      • PPP models,
      • Local trading
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Open data business models,
      • Circular economy models
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Social incentives,
      • Quality of Life,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Affordability,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • City Vision 2050,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Life Cycle approach
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.Regulatory sandboxMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Functional PEDImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Borlänge city has committed to become the carbon-neutral city by 2030.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • New construction
      • New construction
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • New Development
      • Re-use / Transformation Area
      • New Development
      • New Development
      • Re-use / Transformation Area,
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction20251990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential001000
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential180001400010000100300
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential200006
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000100006
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.02666666666666700.041379310344828000.010.01065862242332812
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesnononoyesno
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officenoyesnoyesnonononono
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynonoyesyesnonoyesnono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnonononoyesnoyes
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnonononononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononoyesnonononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernoyesnononononoyesno
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesyesnoyesyesyes
      B1P014 - Residential: Specify the sqm [m²]60000023944360
      B1P014: Officenoyesyesyesnonoyesnono
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynonononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesyesnonoyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnonononoyesnono
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasnonononononoyesnono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesyesyesnonoyesnono
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononoyesno
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Citizens, public, NGO
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Sustainability,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling,
      • Decision making models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P001: Decreasing costs of innovative materials5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
      C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P002: Urban re-development of existing built environment4 - Important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
      C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P005: Non-effective regulations3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers?2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P007: Deficient planning2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P008: Rebound effect2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
      C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P011: Energy price distortion4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • None
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • None
      • Planning/leading,
      • Construction/implementation
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Construction/implementation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Planning/leading,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      • None
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • None
      • Planning/leading
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • None
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)