Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Uncompare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Uncompare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Groningen, PED North | Lund, Brunnshög district | Ankara, Çamlık District | Vantaa, Aviapolis | Oulu, Kaukovainio | Oslo, Verksbyen |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Groningen, PED North | Lund, Brunnshög district | Ankara, Çamlık District | Vantaa, Aviapolis | Oulu, Kaukovainio | Oslo, Verksbyen |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| |||
A1P003: Categorisation of the PED site | ||||||
PED case study | no | yes | yes | yes | yes | yes |
PED relevant case study | no | no | yes | yes | no | no |
PED Lab. | yes | no | no | yes | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality | yes | yes | yes | yes | yes | yes |
Annual energy surplus | yes | yes | yes | no | no | yes |
Energy community | yes | yes | yes | no | no | no |
Circularity | yes | yes | no | yes | yes | no |
Air quality and urban comfort | no | yes | no | no | no | yes |
Electrification | no | yes | yes | no | yes | no |
Net-zero energy cost | no | no | yes | no | no | no |
Net-zero emission | yes | yes | yes | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no |
Maximise self-sufficiency | no | no | yes | no | no | no |
Other | no | yes | no | no | no | no |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | Planning Phase | Planning Phase | In operation | Implementation Phase |
A1P006: Start Date | ||||||
A1P006: Start date | 12/18 | 2015 | 10/22 | 01/23 | 07/18 | |
A1P007: End Date | ||||||
A1P007: End date | 12/23 | 2040 | 09/25 | 12/27 | 08/24 | |
A1P008: Reference Project | ||||||
A1P008: Reference Project | ||||||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
|
| |||
A1P009: Other | GIS open dataset is under construction | |||||
A1P010: Sources | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
| |||||
A1P011: Geographic coordinates | ||||||
X Coordinate (longitude): | 6.535121 | 13.232469400769599 | 32.795369 | 24.958821 | 25.517595084093507 | 10.986173354432992 |
Y Coordinate (latitude): | 53.234846 | 55.71989792207193 | 39.881812 | 60.305488 | 64.99288098173132 | 59.22429716642046 |
A1P012: Country | ||||||
A1P012: Country | Netherlands | Sweden | Turkey | Finland | Finland | Norway |
A1P013: City | ||||||
A1P013: City | Groningen | Lund | Ankara | Vantaa | Oulu | Fredrikstad |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). | Cfa | Dfb | Dsb | Dfb | Dfc | Cfb |
A1P015: District boundary | ||||||
A1P015: District boundary | Functional | Geographic | Geographic | Geographic | Geographic | |
Other | Regional (close to virtual) | |||||
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Public | Private | Mixed | Mixed | Private |
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | Single Owner |
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 7 | 200 | 257 | 6 | 2 | |
A1P019: Conditioned space | ||||||
A1P019: Conditioned space [m²] | 1.01 | 1500000 | 22600 | 19700 | 3550 | |
A1P020: Total ground area | ||||||
A1P020: Total ground area [m²] | 17.132 | 1500000 | 50800 | 3881000 | 60000 | |
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 1 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | yes | yes | no | yes | yes | yes |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | |||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||
A1P022c: Financing - PRIVATE - Other | yes | no | no | yes | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | yes | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | |||||
A1P022e: Financing - PUBLIC - National funding | yes | yes | no | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | |||||
A1P022f: Financing - PUBLIC - Regional funding | no | yes | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | |||||
A1P022g: Financing - PUBLIC - Municipal funding | yes | yes | no | yes | yes | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | |||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||
A1P022i: Financing - RESEARCH FUNDING - EU | yes | yes | yes | yes | yes | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | yes | no | no | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||
A1P022: Other | Multiple different funding schemes depending on the development site within the District and Lab. | |||||
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
|
| |
A1P023: Other | World class sustainable living and research environments | Developing and demonstrating new solutions | ||||
A1P024: More comments: | ||||||
A1P024: More comments: | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high. | ||||
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 5 | |||||
Contact person for general enquiries | ||||||
A1P026: Name | Jasper Tonen, Elisabeth Koops | Markus Paulsson | Prof. Dr. İpek Gürsel DİNO | Eira Linko | Samuli Rinne | Tonje Healey Trulsrud |
A1P027: Organization | Municipality of Groningen | City of Lund | Middle East Technical University | City of Vantaa | City of Oulu | Norwegian University of Science and technology (NTNU) |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University |
A1P028: Other | ||||||
A1P029: Email | Jasper.tonen@groningen.nl | markus.paulsson@lund.se | ipekg@metu.edu.tr | eira.linko@vantaa.fi | samuli.rinne@ouka.fi | tonje.h.trulsrud@ntnu.no |
Contact person for other special topics | ||||||
A1P030: Name | Eva Dalman | Assoc. Prof. Onur Taylan | Samuli Rinne | |||
A1P031: Email | eva.dalman@lund.se | otaylan@metu.edu.tr | samuli.rinne@ouka.fi | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | ||||||
A2P001: Fields of application |
|
|
|
|
|
|
A2P001: Other | Walkability and biking | |||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation |
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | No | Yes | No | No | Yes |
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | No | Yes | Yes | No | No | |
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | No | No | No | |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Mobility, till now, is not included in the energy model. | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Mobility is not included in the calculations. | The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area. | Not included. However, there is a charging place for a shared EV in one building. | |
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 2.3 | 25 | 3.446 | 2.1 | 0.16 | |
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.33 | 30 | 0.528 | 0.2 | 0.053 | |
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | ||||||
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | no | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 3.4240 | 0.1 | 0.18 | |||
A2P011: Wind | no | yes | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Hydro | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_el | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: PVT_el | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Other | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | yes | no | no | yes | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Solar Thermal | yes | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_heat | yes | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.1 | |||||
A2P012: Waste heat+HP | yes | yes | no | yes | yes | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | 2.2 | ||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: PVT_th | yes | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | Geothermal heatpump systems, Waste heat from data centers | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | ||||
A2P014: Annual energy use | ||||||
A2P014: Annual energy use [GWh/annum] | 3.976 | 2.3 | ||||
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered [GWh/annum] | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | no | yes | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Coal | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Oil | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Other | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | yes | no | yes | yes | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Wind | no | yes | no | yes | yes | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Hydro | no | yes | no | yes | yes | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_el | no | yes | no | yes | yes | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_peat_el | no | no | no | no | yes | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: PVT_el | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Other | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Solar Thermal | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_heat | no | no | no | yes | yes | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | |||||
A2P019: Waste heat+HP | no | no | no | yes | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: PVT_th | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Other | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 3.2857142857143 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | -6.035 | ||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | Personal Safety | |||||
A2P022: Health | Encouraging a healthy lifestyle | Healthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort) | ||||
A2P022: Education | ||||||
A2P022: Mobility | Maximum 1/3 transport with car | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | Sustainable mobility | |||
A2P022: Energy | Local energy production 150% of energy need | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | Energy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions | |||
A2P022: Water | ||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | Economic Performance: capital costs, operational costs, overall performance | ||||
A2P022: Housing and Community | 50% rental apartments and 50% owner apartments | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | demopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness | |||
A2P022: Waste | Recycling rate | |||||
A2P022: Other | Smart Cities strategies, Quality of open data | Smartness and Flexibility | ||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | yes | yes | no | no | no | no |
A2P023: Wind Turbines | no | yes | no | no | no | no |
A2P023: Geothermal energy system | yes | yes | no | yes | no | yes |
A2P023: Waste heat recovery | yes | yes | no | yes | yes | no |
A2P023: Waste to energy | yes | no | no | yes | no | no |
A2P023: Polygeneration | no | yes | no | yes | no | no |
A2P023: Co-generation | no | no | no | no | yes | no |
A2P023: Heat Pump | yes | yes | yes | yes | yes | yes |
A2P023: Hydrogen | no | yes | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | yes | yes | no |
A2P023: Biogas | no | no | no | no | no | no |
A2P023: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | |||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | no | yes | yes | yes |
A2P024: Energy management system | yes | yes | no | yes | yes | yes |
A2P024: Demand-side management | yes | yes | no | yes | no | yes |
A2P024: Smart electricity grid | no | yes | no | yes | no | no |
A2P024: Thermal Storage | yes | yes | no | yes | yes | no |
A2P024: Electric Storage | yes | yes | no | yes | no | no |
A2P024: District Heating and Cooling | yes | yes | no | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | yes | yes | no | yes | no | yes |
A2P024: P2P – buildings | no | no | no | no | no | no |
A2P024: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | |||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | no | no | yes | no | yes | no |
A2P025: Energy efficiency measures in historic buildings | yes | no | no | no | no | no |
A2P025: High-performance new buildings | yes | yes | no | yes | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | yes | no | no | no | no |
A2P025: Urban data platforms | yes | yes | no | no | yes | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | yes | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | no |
A2P025: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | |||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | yes | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | yes | no | yes | yes | no |
A2P026: e-Mobility | yes | yes | no | yes | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | yes | yes | no |
A2P026: Car-free area | no | yes | no | no | no | no |
A2P026: Other | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | Walkability | |||||
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | Yes | Yes | No | Yes | Yes | Yes |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | Miljöbyggnad silver/guld | The obligatory buildijng energy classification | NS3700 Norwegian Passive House | ||
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | No | No | |||
A2P029: If yes, please specify and/or enter notes | ||||||
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %), | Carbon neutrality by 2035 | |||
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| ||||
A3P003: Other | No gas grid in Brunnshög | |||||
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | Developing and demonstrating solutions for carbon neutrality | |||
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | E. g. visualizing energy and water consumption | |||
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
|
|
|
| ||
A3P006: Other | Attractivenes | |||||
A3P007: Social models | ||||||
A3P007: Social models |
|
|
|
|
| |
A3P007: Other | ||||||
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
|
|
|
| |
A3P008: Other | ||||||
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
|
| |
A3P009: Other | Energy Positive, Low Emission Zone | |||||
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | ||||
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district. | The original idea is that the area produces at least as much it consumes. | The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis. | |
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | PED-ACT project. | According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions. | Developing systems towards carbon neutrality. Also urban renewal. | The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being. | |
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Urban area | Suburban area | Suburban area | |
B1P004: Type of district | ||||||
B2P004: Type of district |
|
|
|
|
| |
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
|
|
| |
B1P006: Year of construction | ||||||
B1P006: Year of construction | 1986 | |||||
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | 0 | 3500 | ||||
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | 18000 | 3500 | ||||
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | 2000 | |||||
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | 22000 | |||||
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0 | 0.026666666666667 | 0 | 0 | 0.058333333333333 | 0 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | no | no | yes | yes | yes | no |
B1P013 - Residential: Specify the sqm [m²] | 50800 | |||||
B1P013: Office | no | yes | no | yes | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | |||||
B1P013: Industry and Utility | no | no | no | yes | no | yes |
B1P013 - Industry and Utility: Specify the sqm [m²] | whole site was used for idustry and excavation | |||||
B1P013: Commercial | no | no | no | yes | yes | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||
B1P013: Institutional | no | no | no | yes | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||
B1P013: Natural areas | no | yes | no | no | yes | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | |||||
B1P013: Recreational | no | no | no | yes | yes | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||
B1P013: Dismissed areas | no | no | no | yes | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P013: Other | no | yes | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | |||||
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | no | yes | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 600000 | 50800 | ||||
B1P014: Office | no | yes | no | yes | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | |||||
B1P014: Industry and Utility | no | no | no | yes | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P014: Commercial | no | no | no | yes | yes | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||
B1P014: Institutional | no | yes | no | yes | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | |||||
B1P014: Natural areas | no | no | no | no | yes | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||
B1P014: Recreational | no | yes | no | yes | yes | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | |||||
B1P014: Dismissed areas | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P014: Other | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district. | ||||
B2P002: Installation life time | ||||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | |||||
B2P003: Scale of action | ||||||
B2P003: Scale | District | District | ||||
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | The City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens. | ||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | |||||
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | |||||
B2P006: Other | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||
B2P007: Other | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Municipality | ||||
B2P008: Other | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab |
|
| ||||
B2P009: Other | research companies, monitoring company, ict company | |||||
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab |
| |||||
B2P011: Other | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab |
| |||||
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures |
| |||||
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators |
|
| ||||
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | ||||||
B2P017: Capacities | ||||||
B2P017: Capacities | ||||||
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | ||||||
B2P019: Available tools | ||||||
B2P019: Available tools |
|
| ||||
B2P019: Available tools | ||||||
B2P020: External accessibility | ||||||
B2P020: External accessibility | To follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/ | |||||
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | 2 - Slightly important | 4 - Important |
C1P001: Energy Communities, P2P, Prosumers concepts | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P001: Decreasing costs of innovative materials | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant |
C1P001: Multidisciplinary approaches available for systemic integration | 2 - Slightly important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | Real-estate market situation | |||||
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 2 - Slightly important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P002: Urban re-development of existing built environment | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Energy autonomy/independence | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | |||||
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P003: Lack of public participation | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 2 - Slightly important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003:Long and complex procedures for authorization of project activities | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P003: Fragmented and or complex ownership structure | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of internal capacities to support energy transition | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | ||||||
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P004: Lack of Cooperation & support between national-regional-local entities | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | ||||||
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important |
C1P005: Regulatory instability | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P005: Non-effective regulations | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P005: Building code and land-use planning hindering innovative technologies | 1 - Unimportant | 3 - Moderately important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | ? | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | ||||
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P007: Deficient planning | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Retrofitting work in dwellings in occupied state | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P007: Lack/cost of computational scalability | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | ||||||
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P008: Difficulty of finding and engaging relevant actors | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Lack of trust beyond social network | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Rebound effect | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Hostile or passive attitude towards environmentalism | 1 - Unimportant | 4 - Important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | ||||||
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P010: Insufficient external financial support and funding for project activities | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P010: Economic crisis | 1 - Unimportant | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P010: Risk and uncertainty | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P010: Limited access to capital and cost disincentives | 2 - Slightly important | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | ||||||
C1P011: Market barriers | ||||||
C1P011: Split incentives | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P011: Energy price distortion | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | ||||||
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
|
|
| |
C1P012: Research & Innovation |
|
|
|
|
| |
C1P012: Financial/Funding |
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
|
| ||
C1P012: Business process management |
|
|
| |||
C1P012: Urban Services providers |
|
|
| |||
C1P012: Real Estate developers |
|
|
|
|
| |
C1P012: Design/Construction companies |
|
|
|
|
| |
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| ||
C1P012: Social/Civil Society/NGOs |
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
|
| ||
C1P012: Other |
| |||||
C1P012: Other (if any) | ||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)