Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Vienna, Am Kempelenpark
Kladno, Sletiště (Sport Area), PED Winter Stadium
Leon, Former Sugar Factory district
Barcelona, SEILAB & Energy SmartLab
Borlänge, Rymdgatan’s Residential Portfolio
Kifissia, Energy community
Freiburg, Waldsee
Riga, Ķīpsala, RTU smart student city
Stor-Elvdal, Campus Evenstad
Tampere, Ilokkaanpuisto district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthVienna, Am KempelenparkKladno, Sletiště (Sport Area), PED Winter StadiumLeon, Former Sugar Factory districtBarcelona, SEILAB & Energy SmartLabBorlänge, Rymdgatan’s Residential PortfolioKifissia, Energy communityFreiburg, WaldseeRiga, Ķīpsala, RTU smart student cityStor-Elvdal, Campus EvenstadTampere, Ilokkaanpuisto district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesnononoyesyesnono
PED relevant case studynonoyesnonoyesyesnonoyesyes
PED Lab.yesnononoyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnonoyesnoyesyesyesyes
Annual energy surplusyesyesyesyesnoyesnononoyesno
Energy communityyesnoyesnoyesyesyesyesyesnoyes
Circularityyesnononononononononono
Air quality and urban comfortnonononononoyesnononono
Electrificationnonoyesnoyesyesyesyesnonoyes
Net-zero energy costnonononononononononono
Net-zero emissionyesnononoyesnonoyesnonoyes
Self-sufficiency (energy autonomous)nonononoyesnononoyesnoyes
Maximise self-sufficiencynononoyesnoyesnonoyesnono
Othernonononoyesnonononoyesno
Other (A1P004)Green ITEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operationCompleted
A1P006: Start Date
A1P006: Start date12/1807/16202212/1801/201111/2101/2401/1304/14
A1P007: End Date
A1P007: End date12/2302/2512/2302/201311/2412/2612/2410/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
      • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512116.39529214.09296-5.5847952.115.39449523.8145887.88585713584291724.0816833911.07877077353174623.798083
      Y Coordinate (latitude):53.23484648.17359850.1371542.59339141.360.48660938.07734947.98653520708004556.9524595661.4260442039911261.464088
      A1P012: Country
      A1P012: CountryNetherlandsAustriaCzech RepublicSpainSpainSwedenGreeceGermanyLatviaNorwayFinland
      A1P013: City
      A1P013: CityGroningenViennaKladnoLeonBarcelona and TarragonaBorlängeMunicipality of KifissiaFreiburg im BreisgauRigaEvenstad, Stor-Elvdal municipalityTampere
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaCwbCfbCsbCsaDsbCsaCfbCfbDwcDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicGeographicGeographicVirtualGeographicVirtualVirtualGeographicGeographicVirtual
      OtherV1* (ca 8 buildings)The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedMixedPublicMixedMixedPublicPublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED76821010294115226
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.0116.069003700284070170000100009.000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.13273.145699945492000011926425.000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000000100
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnoyesnononononononoyes
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonoyesnononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnononononononononoyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingyesnonononononononoyesyes
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingyesnoyesnonononoyesnonono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesnonononoyesyesnoyes
      A1P022i: Add the value in EUR if available [EUR]7500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonononoyesnoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsGerhard HoferDavid ŠkorňaBegoña Gonzalo OrdenDr. Jaume Salom, Dra. Cristina CorcheroJingchun ShenArtemis Giavasoglou, Kleopatra KalampokaDr. Annette SteingrubeJudith StiekemaÅse Lekang SørensenSenior Scientist Terttu Vainio
      A1P027: OrganizationMunicipality of Groningene7 energy innovation & engineeringMěsto KladnoMunicipality of LeonIRECHögskolan DalarnaMunicipality of Kifissia – SPARCS local teamFraunhofer Institute for solar energy systemsOASCSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesVTT Technical Research Centre of Finland
      A1P028: AffiliationMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / University
      A1P028: OtherMunicipality of Leon - ILRUVnot for profit private organisation
      A1P029: EmailJasper.tonen@groningen.nlgerhard.hofer@e-sieben.atdavid.skorna@mestokladno.czbegona.gonzalo@aytoleon.esJsalom@irec.catjih@du.segiavasoglou@kifissia.grAnnette.Steingrube@ise.fraunhofer.dejudith@oascities.orgase.sorensen@sintef.noterttu.vainio@vtt.fi
      Contact person for other special topics
      A1P030: NameMichal KuzmičMonica Prada CorralXingxing ZhangStavros Zapantis - vice mayor
      A1P031: Emailmichal.kuzmic@cvut.czMonica.Prada@ilruv.esxza@du.sestavros.zapantis@gmail.com
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsTrnsys, PV modelling tools, CADEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy system modelingA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoYesNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesNoYesYesYesYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesNoYesYesYesNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not yet included.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.31.43.490.6777135.71580000.770
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.30.570.0365631.7650000.760.7
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnonoyesyesyesnoyesnonoyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]1.11.240.0650.7
      A2P011: Windnonononononononoyesnono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononoyesnonononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
      A2P011: Biomass_elnononononononononoyesno
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnonononononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononoyesnoyesnonoyesnono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.280.01818
      A2P011: Othernonononononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnononononononononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonononononononoyesno
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
      A2P012: Biomass_heatyesnononononononoyesyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
      A2P012: Waste heat+HPyesnoyesnononononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
      A2P012: Biomass_peat_heatnonononononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonoyesnoyesnonononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononoyesnonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersWaste heat from cooling the ice rink.53 MW PV potential in all three quarters; no other internal renewable energy potentials knownConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Listed values are measurements from 2018. Renewable energy share is increasing.PV plant of energy community locates outside of the city, not on the slot
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]2.10.318132.51.5000.7
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.20551
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononoyesnononoyesnono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononoyesnonononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononononononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononoyesnonononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononoyesnonononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000.5383957219251300000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-1046.930
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securitynone
      A2P022: Healththermal comfort diagram
      A2P022: Educationnone
      A2P022: Mobilitynoneyes
      A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balancenormalized CO2/GHG & Energy intensityyes
      A2P022: Water
      A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIcost of excess emissions
      A2P022: Housing and Communityyes
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesnoyesyesyesyesnoyesnoyesyes
      A2P023: Solar thermal collectorsyesnonoyesnoyesnoyesnoyesno
      A2P023: Wind Turbinesnonononononononononono
      A2P023: Geothermal energy systemyesnonononoyesnoyesnonoyes
      A2P023: Waste heat recoveryyesnoyesnonoyesnoyesnonoyes
      A2P023: Waste to energyyesnonononononoyesnonono
      A2P023: Polygenerationnonononononononononono
      A2P023: Co-generationnononononononoyesnoyesno
      A2P023: Heat Pumpyesnoyesyesnoyesnoyesnonoyes
      A2P023: Hydrogennononononononoyesnonono
      A2P023: Hydropower plantnononoyesnononoyesnonono
      A2P023: Biomassnononononononoyesnoyesno
      A2P023: Biogasnononononononoyesnonono
      A2P023: OtherThe Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyesyesnoyesyesyesyes
      A2P024: Energy management systemyesnoyesyesyesnonoyesyesyesyes
      A2P024: Demand-side managementyesnoyesyesnononoyesyesyesyes
      A2P024: Smart electricity gridnonononoyesnonoyesyesnono
      A2P024: Thermal Storageyesnonononoyesnoyesyesyesno
      A2P024: Electric Storageyesnononoyesnonoyesyesyesno
      A2P024: District Heating and Coolingyesnoyesnonoyesnoyesyesyesno
      A2P024: Smart metering and demand-responsive control systemsyesnoyesnonononoyesyesyesyes
      A2P024: P2P – buildingsnononoyesnononoyesnonono
      A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)Electric grid as virtual battery
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesyesnoyesnoyesnonono
      A2P025: Energy efficiency measures in historic buildingsyesnonoyesnononoyesnonono
      A2P025: High-performance new buildingsyesnonononononononoyesyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononononono
      A2P025: Urban data platformsyesnoyesyesnononoyesyesnono
      A2P025: Mobile applications for citizensnonononononononoyesnoyes
      A2P025: Building services (HVAC & Lighting)nonoyesnoyesyesnonoyesnoyes
      A2P025: Smart irrigationnonononononononononono
      A2P025: Digital tracking for waste disposalnonononononononononono
      A2P025: Smart surveillancenonononononononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononoyesyesnonoyesnonono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononononoyesnonono
      A2P026: e-Mobilityyesnonoyesnononoyesnoyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononoyesnonono
      A2P026: Car-free areanonononononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesNoNoNoYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateNational standards apply.Energy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNoYesNo
      A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • New development strategies
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Climate neutrality by 2035
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Demand management Living Lab
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Open data business models,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Affordability
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionOnsite Energy Ratio > 1The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicBorlänge city has committed to become the carbon-neutral city by 2030.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban areaUrban areaRuralSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • New Development
      • New Development,
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area,
      • Preservation Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction1990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential10058980
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential1005898300
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000000.01065862242332800.00119878048780490012
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonoyesyesnoyesnoyesnonono
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officenoyesyesnonononoyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononononoyesnonono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnoyesnononononoyesnonono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononoyesnonono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononononononoyesnonoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonoyesnonononoyesnonono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononoyesnoyesnonononono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesnoyesnoyesnonoyes
      B1P014 - Residential: Specify the sqm [m²]4360
      B1P014: Officenoyesyesnonononoyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononoyesnonono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnoyesnononononoyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononononoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononononoyesnonono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonoyesnonononoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononoyesnoyesnonononono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant
      C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important4 - Important2 - Slightly important
      C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important3 - Moderately important4 - Important4 - Important4 - Important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P005: Non-effective regulations3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant
      C1P007: Deficient planning2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transitionEnergy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Rebound effect2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P011: Energy price distortion4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading
      • Planning/leading
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      • None
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • None
      • None
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Construction/implementation
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • None
      • None
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation
      • Design/demand aggregation
      • None
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation
      C1P012: Design/Construction companies
      • Construction/implementation
      • None
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      • None
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • None
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • None
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)