Filters:
NameProjectTypeCompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Tartu, City centre area
Maia, Sobreiro Social Housing
Bologna, Pilastro-Roveri district
Kifissia, Energy community
Vantaa, Aviapolis
Ankara, Çamlık District
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthTartu, City centre areaMaia, Sobreiro Social HousingBologna, Pilastro-Roveri districtKifissia, Energy communityVantaa, AviapolisAnkara, Çamlık DistrictStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyesyesno
PED relevant case studynoyesnoyesyesyesyesyes
PED Lab.yesyesyesnonoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyesyesyes
Annual energy surplusyesnononononoyesyes
Energy communityyesnonoyesyesnoyesno
Circularityyesyesnononoyesnono
Air quality and urban comfortnonononoyesnonono
Electrificationnoyesnonoyesnoyesno
Net-zero energy costnonononononoyesno
Net-zero emissionyesyesnonononoyesno
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynoyesyesnononoyesno
Othernononononononoyes
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date12/1802/1610/2109/1901/2310/2201/13
A1P007: End Date
A1P007: End date12/2307/2210/2410/2312/2709/2512/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
    • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
    • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512126.722737-8.37355711.39732323.81458824.95882132.79536911.078770773531746
      Y Coordinate (latitude):53.23484658.38071341.13580444.50710638.07734960.30548839.88181261.42604420399112
      A1P012: Country
      A1P012: CountryNetherlandsEstoniaPortugalItalyGreeceFinlandTurkeyNorway
      A1P013: City
      A1P013: CityGroningenTartuMaiaBolognaMunicipality of KifissiaVantaaAnkaraEvenstad, Stor-Elvdal municipality
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaDfbCsbCfaCsaDfbDsbDwc
      A1P015: District boundary
      A1P015: District boundaryFunctionalFunctionalVirtualGeographicVirtualGeographicGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPrivatePublicMixedMixedPrivatePublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED71822196225722
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.01352172260010000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.1327931447800000388100050800
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesyesnononoyesnono
      A1P022a: Add the value in EUR if available [EUR]6500000
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnoyesnonoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnoyesnononononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesyesyesyesnononoyes
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnonoyesyesnononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnoyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesyesnoyesyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesnononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsJaanus TammAdelina RodriguesProf. Danila LongoArtemis Giavasoglou, Kleopatra KalampokaEira LinkoProf. Dr. İpek Gürsel DİNOÅse Lekang Sørensen
      A1P027: OrganizationMunicipality of GroningenTartu City GovernmentMaia Municipality (CM Maia) – Energy and Mobility divisionUniversity of Bologna - Architecture DepartmentMunicipality of Kifissia – SPARCS local teamCity of VantaaMiddle East Technical UniversitySINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: EmailJasper.tonen@groningen.nlJaanus.tamm@tartu.eedscm.adelina@cm-maia.ptgiavasoglou@kifissia.greira.linko@vantaa.fiipekg@metu.edu.trase.sorensen@sintef.no
      Contact person for other special topics
      A1P030: NameKaspar AlevCarolina Gonçalves (AdEPorto)Stavros Zapantis - vice mayorAssoc. Prof. Onur Taylan
      A1P031: EmailKaspar.alev@tartu.eecarolinagoncalves@adeporto.eustavros.zapantis@gmail.comotaylan@metu.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoYesNoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.39.13.4460.77
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.5280.76
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]3.42400.065
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononoyes
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnonononoyesnono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesyesyesyesnononoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.50.045
      A2P012: Biomass_heatyesnonoyesnononoyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
      A2P012: Waste heat+HPyesnonononoyesnono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]3.9761.500
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]1
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononoyesnono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononononoyesnono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononoyesnono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononoyesnono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononoyesnono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononoyesnono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]980
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Health
      A2P022: Education
      A2P022: Mobility
      A2P022: Energy
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesnoyesyesyes
      A2P023: Solar thermal collectorsyesnoyesyesnononoyes
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemyesnonoyesnoyesnono
      A2P023: Waste heat recoveryyesnonononoyesnono
      A2P023: Waste to energyyesnonoyesnoyesnono
      A2P023: Polygenerationnononononoyesnono
      A2P023: Co-generationnononoyesnononoyes
      A2P023: Heat Pumpyesnoyesyesnoyesyesno
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnoyesnononoyesnoyes
      A2P023: Biogasnoyesnononononono
      A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.The Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnoyesnoyes
      A2P024: Energy management systemyesyesyesnonoyesnoyes
      A2P024: Demand-side managementyesnonononoyesnoyes
      A2P024: Smart electricity gridnononononoyesnono
      A2P024: Thermal Storageyesnonononoyesnoyes
      A2P024: Electric Storageyesnoyesyesnoyesnoyes
      A2P024: District Heating and Coolingyesyesnoyesnoyesnoyes
      A2P024: Smart metering and demand-responsive control systemsyesnoyesnonoyesnoyes
      A2P024: P2P – buildingsnononononononono
      A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.Bidirectional electric vehicle (EV) charging (V2G)
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesyesyesnonoyesno
      A2P025: Energy efficiency measures in historic buildingsyesnonononononono
      A2P025: High-performance new buildingsyesnonoyesnoyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesyesnononono
      A2P025: Urban data platformsyesyesnononononono
      A2P025: Mobile applications for citizensnoyesnoyesnononono
      A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesyesno
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnonoyesyesnononono
      A2P025: Smart surveillancenoyesnoyesnononono
      A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesyesyesnoyesnono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesnoyesnono
      A2P026: e-Mobilityyesyesyesyesnoyesnoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnono
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance Certificate for each dwellingEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoYes
      A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Biogas,
      • Hydrogen
      • Other
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone
      • Low Emission Zone
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.PED-ACT project.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaRural
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnoyesnoyesyesno
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenononoyesnoyesnono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononoyesnoyesnono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnoyesnoyesnoyesnono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesnoyesnono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnoyesnononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnoyesnoyesnoyesnono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononoyesnoyesnono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnoyesnoyesyesno
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenononoyesnoyesnono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononoyesnoyesnono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnoyesnoyesnoyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononoyesnoyesnono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnoyesnoyesnononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesnoyesnoyesnono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononoyesnononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.The City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic
      • Strategic
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipalityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Available data,
      • Life Cycle Analysis
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Social models
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important4 - Important4 - Important5 - Very important4 - Important2 - Slightly important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
      C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important2 - Slightly important4 - Important
      C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important4 - Important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important4 - Important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important4 - Important5 - Very important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
      C1P002: Economic growth need2 - Slightly important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important5 - Very important4 - Important4 - Important4 - Important4 - Important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important4 - Important4 - Important4 - Important2 - Slightly important5 - Very important2 - Slightly important
      C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important5 - Very important3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P005: Regulatory instability3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
      C1P005: Non-effective regulations3 - Moderately important4 - Important4 - Important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P007: Deficient planning2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important
      C1P007: Grid congestion, grid instability4 - Important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
      C1P008: Rebound effect2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important4 - Important4 - Important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important
      C1P010: Economic crisis1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant
      C1P010: Risk and uncertainty3 - Moderately important4 - Important4 - Important5 - Very important4 - Important4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important4 - Important5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant
      C1P011: Energy price distortion4 - Important3 - Moderately important4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      • None
      • Planning/leading
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Real Estate developers
      • Construction/implementation
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)