Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Uncompare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleSalzburg, Gneis district
Umeå, Ålidhem district
Kifissia, Energy community
Istanbul, Ozyegin University Campus
Leon, Former Sugar Factory district
Tampere, Ilokkaanpuisto district
Munich, Harthof district
Stor-Elvdal, Campus Evenstad
Santa Chiara Open Lab, Trento
Vidin, Himik and Bononia
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtUmeå, Ålidhem districtKifissia, Energy communityIstanbul, Ozyegin University CampusLeon, Former Sugar Factory districtTampere, Ilokkaanpuisto districtMunich, Harthof districtStor-Elvdal, Campus EvenstadSanta Chiara Open Lab, TrentoVidin, Himik and Bononia
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnonoyesnoyesnoyesyes
PED relevant case studynonoyesyesnoyesnoyesnono
PED Lab.nononononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesnoyesyesyesyesyes
Annual energy surplusyesnononoyesnoyesyesnoyes
Energy communityyesnoyesnonoyesyesnonono
Circularitynononononononononono
Air quality and urban comfortyesnoyesyesnononononono
Electrificationnonoyesyesnoyesnononono
Net-zero energy costnononononononononono
Net-zero emissionnononononoyesnononono
Self-sufficiency (energy autonomous)nononononoyesnononono
Maximise self-sufficiencynonononoyesnonononono
Othernononoyesnononoyesyesno
Other (A1P004)almost nZEB districtEnergy-flexibilityenergy efficient
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseCompletedImplementation PhaseIn operationIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/2010/2210/2412/1804/1401/2301/1312/1712/18
A1P007: End Date
A1P007: End date01/2409/2510/2812/2310/2312/2712/2412/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Umeå Energi
      •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
      • None yet, but coming
        A1P011: Geographic coordinates
        X Coordinate (longitude):13.04121620.263023.81458829.258300-5.58479523.79808311.56962505994760411.07877077353174611.12663322.8826
        Y Coordinate (latitude):47.77101963.825838.07734941.03060042.59339161.46408848.2043626127515261.4260442039911246.06368543.9936
        A1P012: Country
        A1P012: CountryAustriaSwedenGreeceTurkeySpainFinlandGermanyNorwayItalyBulgaria
        A1P013: City
        A1P013: CitySalzburgUmeåMunicipality of KifissiaIstanbulLeonTampereMunichEvenstad, Stor-Elvdal municipalityTrentoVidin
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCsaCfaCsbDfbCfbDwcCfaCfa
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicVirtualGeographicGeographicVirtualGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicPrivateMixedMixedMixedPublicMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED17152161262274
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1997624200016.069009.0002061000098759.53
        A1P020: Total ground area
        A1P020: Total ground area [m²]52000285.40073.1456925.000560195234.80
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0100000001
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenononoyesnoyesnononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononoyesnonoyesno
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononoyesnoyesyesyes
        A1P022e: Add the value in EUR if available [EUR]41000000
        A1P022f: Financing - PUBLIC - Regional fundingnononononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyesnoyesno
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesnoyesyesnonono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononoyesnono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononoyesno
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Other
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        A1P023: OtherBoosting social cooperation and social aid
        A1P024: More comments:
        A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
        Contact person for general enquiries
        A1P026: NameAbel MagyariGireesh NairArtemis Giavasoglou, Kleopatra KalampokaCem KeskinBegoña Gonzalo OrdenSenior Scientist Terttu VainioStefan SynekÅse Lekang SørensenChristoph GollnerDaniela Kostova
        A1P027: OrganizationABUDUmea MunicipalityMunicipality of Kifissia – SPARCS local teamCenter for Energy, Environment and Economy, Ozyegin UniversityMunicipality of LeonVTT Technical Research Centre of FinlandCity of MunichSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesFFGGreen Synergy Cluster
        A1P028: AffiliationResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherOther
        A1P028: OtherMunicipality of Leon - ILRUVAndreas BärnreutherCluster
        A1P029: Emailmagyari.abel@abud.hugireesh.nair@umu.segiavasoglou@kifissia.grcem.keskin@ozyegin.edu.trbegona.gonzalo@aytoleon.esterttu.vainio@vtt.fistefan.synek@muenchen.dease.sorensen@sintef.nochristoph.gollner@ffg.atdaniela@greensynergycluster.eu
        Contact person for other special topics
        A1P030: NameStrassl IngeborgStavros Zapantis - vice mayorM. Pınar MengüçMonica Prada CorralStefan Synek
        A1P031: Emailinge.strassl@salzburg.gv.atstavros.zapantis@gmail.compinar.menguc@ozyegin.edu.trMonica.Prada@ilruv.esstefan.synek@muenchen.de
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsSimulation tools: City Energy Analyst and PolysunLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoYesNoNoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.4900.77
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]00.570.70.76
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesyesyesyesyesyesnono
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.77706640.2491.240.70.065
        A2P011: Windnononononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononoyesnonononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
        A2P011: Biomass_elnononononononoyesnono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnononononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononoyesnonononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
        A2P011: Othernononononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnonononoyesnononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononoyesyesnono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
        A2P012: Biomass_heatnononononononoyesnono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
        A2P012: Waste heat+HPnononononononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononoyesnonononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononoyesnonononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesPV plant of energy community locates outside of the city, not on the slotListed values are measurements from 2018. Renewable energy share is increasing.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.8190166.13.50.71.500
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]1
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-100
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononoyesnonono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononoyesnonono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnonoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnonononononoyesnonono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononoyesnonono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononoyesnonono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononoyesnonono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononoyesnonono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnoyesnonononoyesnonono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnoyesnonononoyesnonono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
        A2P022: Education
        A2P022: Mobility
        A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsEnergyEnergy
        A2P022: Water
        A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
        A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesnoyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnonononoyesnonoyesyesno
        A2P023: Wind Turbinesnononoyesnononononono
        A2P023: Geothermal energy systemyesnonononoyesyesnoyesyes
        A2P023: Waste heat recoverynononononoyesnonoyesno
        A2P023: Waste to energynononononononononono
        A2P023: Polygenerationnononononononononono
        A2P023: Co-generationnononoyesnononoyesnono
        A2P023: Heat Pumpnononoyesyesyesyesnoyesyes
        A2P023: Hydrogennononononononononono
        A2P023: Hydropower plantnonononoyesnonononono
        A2P023: Biomassnononononononoyesnono
        A2P023: Biogasnononononononononono
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesyesyesnono
        A2P024: Energy management systemyesnonoyesyesyesyesyesnono
        A2P024: Demand-side managementyesyesnoyesyesyesnoyesnono
        A2P024: Smart electricity gridyesnonononononononono
        A2P024: Thermal Storagenonononononoyesyesyesno
        A2P024: Electric Storagenononoyesnonoyesyesnoyes
        A2P024: District Heating and Coolingnononoyesnonoyesyesyesno
        A2P024: Smart metering and demand-responsive control systemsnononoyesnoyesyesyesnono
        A2P024: P2P – buildingsyesnononoyesnonononono
        A2P024: OtherDistrict HeatingElectric grid as virtual batteryBidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnonoyesnoyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnonononoyesnonononono
        A2P025: High-performance new buildingsyesnonoyesnoyesnoyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononononononononono
        A2P025: Urban data platformsnonononoyesnoyesnonono
        A2P025: Mobile applications for citizensnononononoyesnononono
        A2P025: Building services (HVAC & Lighting)yesnonoyesnoyesnononono
        A2P025: Smart irrigationnononoyesnononononono
        A2P025: Digital tracking for waste disposalnononononononononono
        A2P025: Smart surveillancenononoyesnononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonononoyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononononononono
        A2P026: e-Mobilityyesnonoyesyesnoyesyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyesnoyesnonono
        A2P026: Car-free areanononoyesnononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesYesYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Passive house (2 buildings, 4 200 m2, from 2015)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesYesNoNoYes
        A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateLEED BD+C, LEED NC CAMPUSZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.)
        • Energy master planning (SECAP, etc.),
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherNABoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesCarbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Local trading
        • Open data business models,
        • Circular economy models
        • Open data business models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Building / district Certification
        • District Energy plans
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Low Emission Zone
        • Energy Neutral
        • Pollutants Reduction,
        • Greening strategies
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policydecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Munich as demonstrator together with Lyon in ASCEND projectThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.speed and scale of PEDsIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaUrban areaSuburban areaUrban areaRuralUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • New construction,
        • Renovation
        • New construction,
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area,
        • Preservation Area
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development,
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction20242024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential06
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3006
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential9800
        B1P011: Population density before intervention
        B1P011: Population density before intervention00034000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00034.3377715487040120.010714285714286000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnonoyesnoyesnonoyes
        B1P013 - Residential: Specify the sqm [m²]64 787,57
        B1P013: Officenononononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononononononoyes
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnononoyesnononononono
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasyesnonononoyesnononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononoyesnonononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesnonoyesyesyesnoyesno
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonononononononoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononoyesno
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononononononoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononoyesnononononoyes
        B1P014 - Institutional: Specify the sqm [m²]28000035322.21
        B1P014: Natural areasyesnonononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononononononoyesno
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononoyesnonononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P005: Regulatory instability1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P005: Non-effective regulations1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
        C1P006: Environmental barriers
        C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Rebound effect1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • None
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • None
        C1P012: Financial/Funding
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • None
        • Construction/implementation
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • Design/demand aggregation
        • Planning/leading
        • None
        C1P012: Urban Services providers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • Design/demand aggregation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • None
        • None
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • None
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)