Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleSalzburg, Gneis district
Lubia (Soria), CEDER-CIEMAT
Espoo, Leppävaara district, Sello center
Espoo, Kera
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtLubia (Soria), CEDER-CIEMATEspoo, Leppävaara district, Sello centerEspoo, Kera
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesyes
PED relevant case studynononoyes
PED Lab.noyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyes
Annual energy surplusyesnonono
Energy communityyesnonono
Circularitynononoyes
Air quality and urban comfortyesyesnono
Electrificationnononono
Net-zero energy costnononono
Net-zero emissionnoyesnono
Self-sufficiency (energy autonomous)noyesnono
Maximise self-sufficiencynonoyesno
Othernononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2011/1909/1901/15
A1P007: End Date
A1P007: End date01/2412/2310/2212/35
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
A1P011: Geographic coordinates
X Coordinate (longitude):13.041216-2.50824.810124.75377778
Y Coordinate (latitude):47.77101941.60360.217960.21622222
A1P012: Country
A1P012: CountryAustriaSpainFinlandFinland
A1P013: City
A1P013: CitySalzburgLubia - SoriaEspooEspoo
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDfbDfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED1765
A1P019: Conditioned space
A1P019: Conditioned space [m²]199762267956
A1P020: Total ground area
A1P020: Total ground area [m²]640000053000580000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0050
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenononono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnononono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesno
A1P022i: Add the value in EUR if available [EUR]629000
A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities,
  • Other
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Positive externalities,
  • Boosting local businesses
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
A1P023: OtherBoosting social cooperation and social aidCircular economy
A1P024: More comments:
A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameAbel MagyariDr. Raquel RamosJaano JuhmenJoni Mäkinen
A1P027: OrganizationABUDCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)SIEMENS - Data Center ForumCity of Espoo
A1P028: AffiliationResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public Bodies
A1P028: Other
A1P029: Emailmagyari.abel@abud.huraquel.ramos@ciemat.esJaano.juhmen@siemens.comjoni.makinen@espoo.fi
Contact person for other special topics
A1P030: NameStrassl IngeborgDr. Oscar Seco
A1P031: Emailinge.strassl@salzburg.gv.atoscar.seco@ciemat.es
Pursuant to the General Data Protection RegulationYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)
A2P003: Application of ISO52000
A2P003: Application of ISO52000YesNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesNo
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.5
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.4
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesnoyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.77706644
A2P011: Windnoyesnono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronoyesnono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnoyesnono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesyesnono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnoyesnono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnoyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnoyesnoyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnoyesnono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.81901678.8
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.4
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-10
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
A2P022: Education
A2P022: Mobility
A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
A2P022: Water
A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesnoyes
A2P023: Solar thermal collectorsnoyesnono
A2P023: Wind Turbinesnoyesnono
A2P023: Geothermal energy systemyesyesnono
A2P023: Waste heat recoverynoyesnoyes
A2P023: Waste to energynononono
A2P023: Polygenerationnoyesnono
A2P023: Co-generationnoyesnono
A2P023: Heat Pumpnoyesnoyes
A2P023: Hydrogennoyesnono
A2P023: Hydropower plantnoyesnono
A2P023: Biomassnoyesnono
A2P023: Biogasnononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyes
A2P024: Energy management systemyesyesnoyes
A2P024: Demand-side managementyesyesnoyes
A2P024: Smart electricity gridyesyesnoyes
A2P024: Thermal Storagenoyesnono
A2P024: Electric Storagenoyesnono
A2P024: District Heating and Coolingnoyesnoyes
A2P024: Smart metering and demand-responsive control systemsnoyesnono
A2P024: P2P – buildingsyesnonono
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnoyesnono
A2P025: Energy efficiency measures in historic buildingsnononono
A2P025: High-performance new buildingsyesnonoyes
A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyes
A2P025: Urban data platformsnononoyes
A2P025: Mobile applications for citizensnononono
A2P025: Building services (HVAC & Lighting)yesyesnoyes
A2P025: Smart irrigationnononono
A2P025: Digital tracking for waste disposalnononono
A2P025: Smart surveillancenononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)nononoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyes
A2P026: e-Mobilityyesnonoyes
A2P026: Soft mobility infrastructures and last mile solutionsnononoyes
A2P026: Car-free areanoyesnono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesNo
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesNoNo
A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies,
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • Local trading
  • Demand management Living Lab
  • PPP models,
  • Circular economy models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Citizen/owner involvement in planning and maintenance
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Building / district Certification
  • District Energy plans,
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral,
  • Low Emission Zone
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project development
B1P003: Environment of the case study area
B2P003: Environment of the case study areaSuburban areaRuralUrban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • New Development
  • Re-use / Transformation Area
B1P006: Year of construction
B1P006: Year of construction2024
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential14000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention0000
B1P012: Population density after intervention
B1P012: Population density after intervention0000.041379310344828
B1P013: Building and Land Use before intervention
B1P013: Residentialnononoyes
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenononoyes
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynononoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnonono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononoyes
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnonoyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenononoyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnononoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnonono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnononoyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Industrial
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT),
  • Ambient measures,
  • Social interactions
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Environmental,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
B2P019: Available tools
B2P019: Available tools
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P001: Storage systems and E-mobility market penetration1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant4 - Important1 - Unimportant5 - Very important
C1P001: Social acceptance (top-down)1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P001: Presence of integrated urban strategies and plans1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need1 - Unimportant4 - Important1 - Unimportant5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important1 - Unimportant5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P002: Urban re-development of existing built environment1 - Unimportant5 - Very important1 - Unimportant5 - Very important
C1P002: Economic growth need1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P002: Territorial and market attractiveness1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P002: Energy autonomy/independence1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P005: Regulatory instability1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P005: Non-effective regulations1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P005: Insufficient or insecure financial incentives1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers3 - Moderately important
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Deficient planning1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P007: Lack/cost of computational scalability1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P008: Low acceptance of new projects and technologies1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P008: Rebound effect1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P008: Exclusion of socially disadvantaged groups1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P009: Lack of awareness among authorities1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P010: Economic crisis1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P010: Risk and uncertainty1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P010: Lack of consolidated and tested business models1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
C1P012: Research & Innovation
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
C1P012: Financial/Funding
  • None
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Urban Services providers
  • Planning/leading
  • Planning/leading,
  • Construction/implementation
C1P012: Real Estate developers
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • None
  • Planning/leading
C1P012: Industry/SME/eCommerce
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)