Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Munich, Harthof district
Findhorn, the Park
Riga, Ķīpsala, RTU smart student city
Leipzig, Baumwollspinnerei district
Vantaa, Aviapolis
Innsbruck, Campagne-Areal
Ankara, Çamlık District
Schönbühel-Aggsbach, Schönbühel an der Donau
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaMunich, Harthof districtFindhorn, the ParkRiga, Ķīpsala, RTU smart student cityLeipzig, Baumwollspinnerei districtVantaa, AviapolisInnsbruck, Campagne-ArealAnkara, Çamlık DistrictSchönbühel-Aggsbach, Schönbühel an der Donau
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesyesnoyesno
PED relevant case studyyesnonononoyesyesyesyes
PED Lab.yesnonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnonononoyesno
Energy communitynoyesyesyesnononoyesyes
Circularityyesnoyesnonoyesnonono
Air quality and urban comfortnonononoyesnononono
Electrificationyesnoyesnoyesnonoyesno
Net-zero energy costnononononononoyesyes
Net-zero emissionyesnoyesnononoyesyesno
Self-sufficiency (energy autonomous)nononoyesnonononono
Maximise self-sufficiencyyesnoyesyesnononoyesyes
Othernonononoyesnononono
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseIn operationPlanning PhaseImplementation PhasePlanning PhaseCompletedPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/1601/2301/6201/2401/2304/1610/22
A1P007: End Date
A1P007: End date07/2212/2712/2612/2704/2209/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):26.72273711.569625059947604-3.609924.0816833912.31845824.95882111.42434673814025632.79536915.3969
        Y Coordinate (latitude):58.38071348.2043626127515257.653056.9524595651.32649260.30548847.27147078672910439.88181248.2752
        A1P012: Country
        A1P012: CountryEstoniaGermanyUnited KingdomLatviaGermanyFinlandAustriaTurkeyAustria
        A1P013: City
        A1P013: CityTartuMunichFindhornRigaLeipzigVantaaInnsbruckAnkaraSchönbühel an der Donau
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDwcCfbDfbDfbDfbDsbDfb
        A1P015: District boundary
        A1P015: District boundaryFunctionalGeographicGeographicGeographicFunctionalGeographicGeographicGeographicGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPublicMixedMixedPrivatePrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1812616015242570
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]35217206170000170002227722600477
        A1P020: Total ground area
        A1P020: Total ground area [m²]79314456018000011926430000388100011351508002450
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000110200
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnoyesnonoyesnonoyes
        A1P022a: Add the value in EUR if available [EUR]6500000
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononoyesnonono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingyesnononononononono
        A1P022d: Add the value in EUR if available [EUR]4000000
        A1P022e: Financing - PUBLIC - National fundingyesnoyesnononononoyes
        A1P022e: Add the value in EUR if available [EUR]8000000
        A1P022f: Financing - PUBLIC - Regional fundingnonononononononoyes
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononoyesnonono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnoyesnoyesno
        A1P022i: Add the value in EUR if available [EUR]7500000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesyesno
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Other
        • Boosting local and sustainable production
        A1P023: OtherSustainable and replicable business models regarding renewable energy systemsCreate affordable appartments for the citizens
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
        Contact person for general enquiries
        A1P026: NameJaanus TammStefan SynekStefano NebioloJudith StiekemaSimon BaumEira LinkoGeorgios DermentzisProf. Dr. İpek Gürsel DİNOGhazal Etminan
        A1P027: OrganizationTartu City GovernmentCity of MunichFindhorn Innovation Research and Education CICOASCCENERO Energy GmbHCity of VantaaUniversity of InnsbruckMiddle East Technical UniversityGhazal.Etminan@ait.ac.at
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / University
        A1P028: OtherAndreas Bärnreuthernot for profit private organisationCENERO Energy GmbH
        A1P029: EmailJaanus.tamm@tartu.eestefan.synek@muenchen.destefanonebiolo@gmail.comjudith@oascities.orgsib@cenero.deeira.linko@vantaa.fiGeorgios.Dermentzis@uibk.ac.atipekg@metu.edu.trGhazal.Etminan@ait.ac.at
        Contact person for other special topics
        A1P030: NameKaspar AlevStefan SynekSimon BaumAssoc. Prof. Onur Taylan
        A1P031: EmailKaspar.alev@tartu.eestefan.synek@muenchen.desib@cenero.deotaylan@metu.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy production,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy modeling
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.180001.650.393.4460.066
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.250000.6550.5280.012
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesnoyesyesyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.423.4240
        A2P011: Windnonoyesyesnonononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononoyesnonononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononoyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesyesyesnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
        A2P012: Biomass_heatnonoyesyesnonononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonoyesnonoyesnonono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonoyesnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes3x225 kW wind turbines + 100 kW PVConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]1.22.4210.963.9760.079
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]1.2-20.0011
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnoyesnononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnoyesnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnoyesnononoyesnonoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnoyesnononoyesnonoyes
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononoyesnonoyes
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnoyesnononoyesnonoyes
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnoyesnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnoyesnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnoyesnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnoyesnononoyesnonono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnoyesnononoyesnonono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononoyes
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]9804
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
        A2P022: Education
        A2P022: Mobility
        A2P022: EnergyEnergyapplySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and CommunitySpecify the associated KPIs
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesnonoyesyesyesyes
        A2P023: Solar thermal collectorsnonoyesnononononono
        A2P023: Wind Turbinesnonoyesnononononono
        A2P023: Geothermal energy systemnoyesnononoyesnonono
        A2P023: Waste heat recoverynonoyesnonoyesnonono
        A2P023: Waste to energynononononoyesnonono
        A2P023: Polygenerationnononononoyesnonono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpnoyesyesnonoyesyesyesyes
        A2P023: Hydrogennonononononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassyesnoyesnonoyesnonono
        A2P023: Biogasyesnononononononono
        A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnoyesnonono
        A2P024: Energy management systemyesyesyesyesnoyesnonoyes
        A2P024: Demand-side managementnononoyesnoyesnonono
        A2P024: Smart electricity gridnononoyesnoyesnonono
        A2P024: Thermal Storagenoyesyesyesnoyesyesnono
        A2P024: Electric Storagenoyesyesyesnoyesnonono
        A2P024: District Heating and Coolingyesyesyesyesnoyesyesnono
        A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesnonono
        A2P024: P2P – buildingsnonononononoyesnoyes
        A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingyesyesnononononoyesyes
        A2P025: Energy efficiency measures in historic buildingsnonononononononoyes
        A2P025: High-performance new buildingsnonoyesnonoyesyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononono
        A2P025: Urban data platformsyesyesnoyesnonononono
        A2P025: Mobile applications for citizensyesnonoyesnonononono
        A2P025: Building services (HVAC & Lighting)nononoyesnoyesyesyesno
        A2P025: Smart irrigationnonononononononono
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillanceyesnononononononono
        A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnonononoyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononoyesnonono
        A2P026: e-Mobilityyesyesyesnonoyesnonono
        A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononoyesnonono
        A2P026: Car-free areanonononononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYesYesNoYes
        A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 2030Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Open data business models
        • Open data business models,
        • Innovative business models,
        • Demand management Living Lab
        • Innovative business models,
        • Other
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Local trading,
        • Existing incentives
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Digital twinning and visual 3D models
        • Strategic urban planning,
        • SECAP Updates
        • Digital twinning and visual 3D models,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral
        • Other
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone
        • Energy Neutral,
        • Low Emission Zone
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free
        A3P009: OtherPositive Energy Balance for the demo siteEnergy Positive, Low Emission Zone
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsdecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionMunich as demonstrator together with Lyon in ASCEND projectExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentspeed and scale of PEDsExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.PED-ACT project.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaRuralUrban areaUrban areaUrban areaSuburban areaRurban
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • New construction
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • Retrofitting Area,
        • Preservation Area
        B1P006: Year of construction
        B1P006: Year of construction20221986
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential45006
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential6780
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.01071428571428600000.06871641265086800
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesyesnononoyesnoyesyes
        B1P013 - Residential: Specify the sqm [m²]50800
        B1P013: Officenononononoyesnonoyes
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononoyesnonono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialyesnonononoyesnonono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononoyesnonono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnoyesnononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalyesnonononoyesnonono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononoyesnonono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesyesnonoyesyesyesyes
        B1P014 - Residential: Specify the sqm [m²]50800
        B1P014: Officenonoyesnonoyesnonoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononoyesnonono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnonononoyesyesnono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesyesnono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasyesnoyesnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnonononoyesyesnono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data,
        • Life Cycle Analysis
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Social models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant4 - Important
        C1P001: Decreasing costs of innovative materials3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important
        C1P001: Presence of integrated urban strategies and plans5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important
        C1P002: Energy autonomy/independence4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important3 - Moderately important
        C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
        C1P003: Lack of internal capacities to support energy transition4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Deficient planning1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P007: Retrofitting work in dwellings in occupied state5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P007: Lack of well-defined process3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Lack/cost of computational scalability3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Grid congestion, grid instability2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Difficult definition of system boundaries5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
        C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Rebound effect3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Economic crisis3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important5 - Very important4 - Important
        C1P010: Risk and uncertainty4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading
        • Planning/leading
        • Planning/leading
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • Planning/leading
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Business process management
        • Planning/leading
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Urban Services providers
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading
        C1P012: Real Estate developers
        • None
        • Planning/leading
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading
        • Construction/implementation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)