Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Munich, Harthof district
Tampere, Ilokkaanpuisto district
Évora, Portugal
Luxembourg, Betzdorf
Barcelona, Santa Coloma de Gramenet
Riga, Ķīpsala, RTU smart student city
Romania, Alba Iulia PED
Oulu, Kaukovainio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaMunich, Harthof districtTampere, Ilokkaanpuisto districtÉvora, PortugalLuxembourg, BetzdorfBarcelona, Santa Coloma de GramenetRiga, Ķīpsala, RTU smart student cityRomania, Alba Iulia PEDOulu, Kaukovainio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesyesyesyes
PED relevant case studyyesnoyesyesyesnononono
PED Lab.yesnonoyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesyesyesyesyes
Annual energy surplusnoyesnoyesyesyesnoyesno
Energy communitynoyesyesyesyesnoyesyesno
Circularityyesnononoyesnononoyes
Air quality and urban comfortnonononoyesyesnoyesno
Electrificationyesnoyesnoyesnonoyesyes
Net-zero energy costnonononononononono
Net-zero emissionyesnoyesnononononono
Self-sufficiency (energy autonomous)nonoyesnononoyesyesno
Maximise self-sufficiencyyesnononononoyesyesno
Othernonononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseCompletedImplementation PhaseImplementation PhaseImplementation PhasePlanning PhaseImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date02/1601/2304/1410/1906/2301/2401/24
A1P007: End Date
A1P007: End date07/2212/2710/2309/2404/2612/2612/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • None yet, but coming
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
A1P011: Geographic coordinates
X Coordinate (longitude):26.72273711.56962505994760423.798083-7.9093776.3616022.1624.0816833923.58011209802323525.517595084093507
Y Coordinate (latitude):58.38071348.2043626127515261.46408838.57080449.68277441.3956.9524595646.07701527868011564.99288098173132
A1P012: Country
A1P012: CountryEstoniaGermanyFinlandPortugalLuxembourgSpainLatviaRomaniaFinland
A1P013: City
A1P013: CityTartuMunichTampereÉvoraBetzdorfBarcelonaRigaAlba IuliaOulu
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDfbCsaCfbCsaCfbDfbDfc
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicVirtualGeographicGeographicGeographicGeographicFunctional
OtherGeographicRegional (close to virtual)
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedMixedPublicPrivatePublicPublicMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED18126624161566
A1P019: Conditioned space
A1P019: Conditioned space [m²]352172069.000173.82154217000019700
A1P020: Total ground area
A1P020: Total ground area [m²]79314456025.0001192648423.4560000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000000100
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnoyesnononononoyes
A1P022a: Add the value in EUR if available [EUR]6500000
A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonoyesnononononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnonononononoyesno
A1P022d: Add the value in EUR if available [EUR]4000000
A1P022e: Financing - PUBLIC - National fundingyesnoyesnonononoyesno
A1P022e: Add the value in EUR if available [EUR]8000000
A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononononoyesyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononoyesnononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnoyesyesnoyes
A1P022i: Add the value in EUR if available [EUR]199982755039037500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Boosting local and sustainable production
  • Other
  • Positive externalities
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Other
  • Positive externalities,
  • Boosting local and sustainable production
A1P023: OtherBoosting sustainability for public schoolsDeveloping and demonstrating new solutions
A1P024: More comments:
A1P024: More comments:
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.55
Contact person for general enquiries
A1P026: NameJaanus TammStefan SynekSenior Scientist Terttu VainioJoão Bravo DiasJulien BertucciJaume SalomJudith StiekemaTudor DrâmbăreanSamuli Rinne
A1P027: OrganizationTartu City GovernmentCity of MunichVTT Technical Research Centre of FinlandEDP LabelecSNHBMIRECOASCMunicipality of Alba IuliaCity of Oulu
A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversitySME / IndustryMunicipality / Public BodiesResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public Bodies
A1P028: OtherAndreas Bärnreuthernot for profit private organisationMaria Elena Seemann
A1P029: EmailJaanus.tamm@tartu.eestefan.synek@muenchen.deterttu.vainio@vtt.fijoao.bravodias@edp.ptjulien.bertucci@snhbm.lujsalom@irec.catjudith@oascities.orgtudor.drambarean@apulum.rosamuli.rinne@ouka.fi
Contact person for other special topics
A1P030: NameKaspar AlevStefan SynekJoan Estrada AliberasMaria-Elena SeemannSamuli Rinne
A1P031: EmailKaspar.alev@tartu.eestefan.synek@muenchen.dej_estrada@gencat.catmaria.seemann@apulum.roapulsamuli.rinne@ouka.fi
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy production,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Water use,
  • Indoor air quality
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNoYesNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoNoYesYesNo
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNoYesNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Not included. However, there is a charging place for a shared EV in one building.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.1080000.9822.1
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.750000.0484410.2
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesnonoyesnoyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.050.1
A2P011: Windnonononononoyesnono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonononononoyesnono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononoyesnonono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnonoyesnononononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesyesnonononononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
A2P012: Biomass_heatnonononononoyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonononononononoyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
A2P012: Biomass_peat_heatnonononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononononoyesno
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesPV plant of energy community locates outside of the city, not on the slot-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Only PVs - 940 PVs on the main buildingHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.70.0330.0000484412.3
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]0.0300.000113331
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnoyesnonononoyesnono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnoyesnonononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononononoyesno
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnoyesnonononononoyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnoyesnonononononoyes
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononononononoyes
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnoyesnonononononoyes
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnoyesnonononononoyes
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnoyesnonononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononononononoyesno
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnoyesnonononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnoyesnonononononoyes
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
A2P019: Waste heat+HPnoyesnonononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononononoyesno
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000000003.2857142857143
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]98000
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Securityyes
A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsyesEncouraging a healthy lifestyle
A2P022: Educationyes
A2P022: MobilityyesModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
A2P022: EnergyEnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsyesFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
A2P022: Wateryes
A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonyesTotal investments, Payback time, Economic value of savings
A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
A2P022: WasteRecycling rate
A2P022: OtherSmart Cities strategies, Quality of open data
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesnoyesnoyesyes
A2P023: Solar thermal collectorsnononoyesnononoyesno
A2P023: Wind Turbinesnonononononononono
A2P023: Geothermal energy systemnoyesyesnononononono
A2P023: Waste heat recoverynonoyesnononononoyes
A2P023: Waste to energynonononononononono
A2P023: Polygenerationnononononononoyesno
A2P023: Co-generationnononononononoyesyes
A2P023: Heat Pumpnoyesyesnonoyesnoyesyes
A2P023: Hydrogennonononononononono
A2P023: Hydropower plantnonononononononono
A2P023: Biomassyesnononononononoyes
A2P023: Biogasyesnononononononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesnoyesyesyes
A2P024: Energy management systemyesyesyesyesyesyesyesyesyes
A2P024: Demand-side managementnonoyesnonoyesyesyesno
A2P024: Smart electricity gridnononoyesnonoyesyesno
A2P024: Thermal Storagenoyesnoyesnonoyesnoyes
A2P024: Electric Storagenoyesnoyesyesnoyesyesno
A2P024: District Heating and Coolingyesyesnonononoyesnoyes
A2P024: Smart metering and demand-responsive control systemsnoyesyesyesnonoyesyesno
A2P024: P2P – buildingsnononoyesnononoyesno
A2P024: OtherElectric grid as virtual battery
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesnononononoyesyes
A2P025: Energy efficiency measures in historic buildingsnononoyesnonononono
A2P025: High-performance new buildingsnonoyesnoyesyesnonoyes
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononononoyesno
A2P025: Urban data platformsyesyesnoyesnonoyesyesyes
A2P025: Mobile applications for citizensyesnoyesyesnonoyesnono
A2P025: Building services (HVAC & Lighting)nonoyesyesyesyesyesyesyes
A2P025: Smart irrigationnonononononononono
A2P025: Digital tracking for waste disposalnononoyesnonononono
A2P025: Smart surveillanceyesnonoyesnonononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnonononononoyesyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononononoyesyes
A2P026: e-Mobilityyesyesnoyesyesnonoyesyes
A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyesnonononoyes
A2P026: Car-free areanonononononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesNoYesYesNoYesYes
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe obligatory buildijng energy classification
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoYesNoNoYesNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 203040% reduction in emissions by 2030 according to the Covenant of MayorsCarbon neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDDeveloping and demonstrating solutions for carbon neutrality
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating systemE. g. visualizing energy and water consumption
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Open data business models
  • Open data business models,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Open data business models,
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • SECAP Updates
  • Building / district Certification
  • Digital twinning and visual 3D models
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Net zero carbon footprint,
  • Carbon-free,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Net zero carbon footprint
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsdecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionMunich as demonstrator together with Lyon in ASCEND projectThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Positive energy districtThe original idea is that the area produces at least as much it consumes.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentspeed and scale of PEDsPOCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Developing systems towards carbon neutrality. Also urban renewal.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaRuralUrban areaUrban areaUrban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • Renovation
  • New construction
  • Renovation
  • New construction,
  • Renovation
  • New construction
  • Renovation
  • New construction,
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • New Development
  • Preservation Area
  • New Development
  • New Development
  • Retrofitting Area
  • New Development,
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction1976
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential4500603500
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential63003500
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention000000000
B1P012: Population density after intervention
B1P012: Population density after intervention00.01071428571428612000000.058333333333333
B1P013: Building and Land Use before intervention
B1P013: Residentialyesyesnononoyesnonoyes
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonononononononono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonononononononono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnononononononoyes
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononononoyesno
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnoyesnononononoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalyesnononononononoyes
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonononononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesyesnonoyesnonoyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonononononononono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonononononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnononononononoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononononononoyesno
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnononononononoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnononononononoyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • E-mobility,
  • Social interactions,
  • Circular economy models
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Social models
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important
C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
C1P001: Social acceptance (top-down)4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important
C1P001: Presence of integrated urban strategies and plans5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important
C1P002: Economic growth need2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
C1P002: Energy autonomy/independence4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
C1P003: Lack of internal capacities to support energy transition4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P005: Non-effective regulations4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important
C1P007: Deficient planning1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P007: Lack/cost of computational scalability3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P007: Grid congestion, grid instability2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
C1P007: Difficult definition of system boundaries5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
C1P008: Low acceptance of new projects and technologies2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Rebound effect3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
C1P010: Economic crisis3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
C1P010: Risk and uncertainty4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Planning/leading
  • Planning/leading
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • None
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Design/demand aggregation
  • Planning/leading,
  • Construction/implementation
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Urban Services providers
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading
C1P012: Real Estate developers
  • None
  • Planning/leading
  • Planning/leading,
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation
  • Planning/leading,
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • None
  • Design/demand aggregation
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • None
  • Design/demand aggregation
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)