Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Amsterdam, Buiksloterham PED
Vantaa, Aviapolis
Ankara, Çamlık District
Bærum, Eiksveien 116
Lublin
Groningen, PED South
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaAmsterdam, Buiksloterham PEDVantaa, AviapolisAnkara, Çamlık DistrictBærum, Eiksveien 116LublinGroningen, PED South
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnoyesno
PED relevant case studyyesnoyesyesyesnono
PED Lab.yesnoyesnononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnoyesnoyesnoyesyes
Energy communitynoyesnoyesnoyesyes
Circularityyesyesyesnonoyesyes
Air quality and urban comfortnononononoyesno
Electrificationyesyesnoyesyesnono
Net-zero energy costnononoyesyesyesno
Net-zero emissionyesyesnoyesyesyesyes
Self-sufficiency (energy autonomous)nononononoyesno
Maximise self-sufficiencyyesnonoyesnoyesno
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/1611/1901/2310/2201/1812/18
A1P007: End Date
A1P007: End date07/2210/2512/2709/2506/2312/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Meteorological open data
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • TNO, Hanze, RUG,
    • Ped noord book
    A1P011: Geographic coordinates
    X Coordinate (longitude):26.7227374.904124.95882132.79536910.533322.56846.590655
    Y Coordinate (latitude):58.38071352.367660.30548839.88181259.910051.246553.204087
    A1P012: Country
    A1P012: CountryEstoniaNetherlandsFinlandTurkeyNorwayPolandNetherlands
    A1P013: City
    A1P013: CityTartuAmsterdamVantaaAnkaraBærumLublinGroningen
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDfbDsbDfbCfbCfa
    A1P015: District boundary
    A1P015: District boundaryFunctionalFunctionalGeographicGeographicOtherGeographicFunctional
    OtherBuilding
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPrivatePublicPrivateMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1860257154
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]35217285002260021664.737.86
    A1P020: Total ground area
    A1P020: Total ground area [m²]79314438810005080072833.4745.093
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0000000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesyesnononoyes
    A1P022a: Add the value in EUR if available [EUR]6500000
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonoyesnononoyes
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingyesnononononono
    A1P022d: Add the value in EUR if available [EUR]4000000
    A1P022e: Financing - PUBLIC - National fundingyesnononononoyes
    A1P022e: Add the value in EUR if available [EUR]8000000
    A1P022f: Financing - PUBLIC - Regional fundingnonononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnoyesnoyes
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnonoyes
    A1P022i: Add the value in EUR if available [EUR]
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Boosting local and sustainable production
    • Other
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: OtherSocial housing
    A1P024: More comments:
    A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
    Contact person for general enquiries
    A1P026: NameJaanus TammOmar ShafqatEira LinkoProf. Dr. İpek Gürsel DİNOJohn Einar ThommesenDorota Wolińska-PietrzakJasper Tonen, Elisabeth Koops
    A1P027: OrganizationTartu City GovernmentAmsterdam University of Applied SciencesCity of VantaaMiddle East Technical UniversitySINTEF CommunityLublin MunicipalityMunicipality of Groningen
    A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public Bodies
    A1P028: Other
    A1P029: EmailJaanus.tamm@tartu.eeo.shafqat@hva.nleira.linko@vantaa.fiipekg@metu.edu.trjohn.thommesen@sintef.nodwolinska@lublin.euJasper.tonen@groningen.nl
    Contact person for other special topics
    A1P030: NameKaspar AlevOmar ShafqatAssoc. Prof. Onur TaylanJohn Einar Thommesen
    A1P031: EmailKaspar.alev@tartu.eeo.shafqat@hva.nlotaylan@metu.edu.trjohn.thommesen@sintef.no
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)City vision, Innovation AteliersPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.SEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesNoYesNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.Mobility, till now, is not included in the energy model.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.13.4461.86
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.5281.45
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesyesnonono
    A2P011: PV - specify production in GWh/annum [GWh/annum]3.4240
    A2P011: Windnonononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnoyesnonononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnoyesyesnononoyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalyesnononononoyes
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnoyesnonononoyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesyesnononoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononoyes
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]3.976
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnoyesnoyesnonono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnoyesnonononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnoyesnonononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesyesnononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnoyesyesnononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesyesnononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnoyesyesnononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnoyesnonononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnoyesnonononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnoyesnonononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnoyesnonononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnoyesyesnononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnoyesyesnononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnoyesnonononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnoyesnonononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnoyesnonononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]980250
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Health
    A2P022: Education
    A2P022: Mobility
    A2P022: Energy
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and Community
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesnoyesyes
    A2P023: Solar thermal collectorsnonononononoyes
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemnoyesyesnononoyes
    A2P023: Waste heat recoverynoyesyesnononoyes
    A2P023: Waste to energynoyesyesnononoyes
    A2P023: Polygenerationnonoyesnononono
    A2P023: Co-generationnonononononono
    A2P023: Heat Pumpnoyesyesyesnoyesyes
    A2P023: Hydrogennononononoyesno
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassyesyesyesnononono
    A2P023: Biogasyesyesnonononono
    A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnonoyesyes
    A2P024: Energy management systemyesyesyesnonoyesyes
    A2P024: Demand-side managementnoyesyesnonoyesno
    A2P024: Smart electricity gridnoyesyesnonoyesno
    A2P024: Thermal Storagenoyesyesnonoyesyes
    A2P024: Electric Storagenoyesyesnonoyesyes
    A2P024: District Heating and Coolingyesyesyesnonoyesyes
    A2P024: Smart metering and demand-responsive control systemsnoyesyesnonoyesyes
    A2P024: P2P – buildingsnoyesnonononono
    A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesyesnoyesnoyesno
    A2P025: Energy efficiency measures in historic buildingsnoyesnononoyesyes
    A2P025: High-performance new buildingsnoyesyesnonoyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnononoyesyes
    A2P025: Urban data platformsyesyesnononoyesyes
    A2P025: Mobile applications for citizensyesyesnononoyesno
    A2P025: Building services (HVAC & Lighting)noyesyesyesnoyesno
    A2P025: Smart irrigationnoyesnonononono
    A2P025: Digital tracking for waste disposalnoyesnonononono
    A2P025: Smart surveillanceyesnononononono
    A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesyesyesnonoyesno
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesyesnonoyesno
    A2P026: e-Mobilityyesyesyesnonoyesyes
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesyesnononono
    A2P026: Car-free areanoyesnonononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    A3P003: OtherHeating Grid
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Nursing home for people with special needs
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab,
    • Local trading,
    • Existing incentives
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • Blockchain
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Social incentives,
    • Quality of Life,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Strategic urban planning,
    • SECAP Updates
    • Digital twinning and visual 3D models,
    • District Energy plans
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Life Cycle approach
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    • Other
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral
    A3P009: OtherEnergy Positive, Low Emission ZonePEB
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsRegulatory sandboxAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionFunctional PEDNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.PEB
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.PED-ACT project.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • New construction,
    • Renovation
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • New Development
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction1986
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential4500
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0000000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnoyesyesnonono
    B1P013 - Residential: Specify the sqm [m²]50800
    B1P013: Officenonoyesnononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynoyesyesnononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialyesnoyesnononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonoyesnononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesnononononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalyesnoyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonoyesnononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesyesnonono
    B1P014 - Residential: Specify the sqm [m²]50800
    B1P014: Officenoyesyesnononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonoyesnononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesyesyesnononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesnononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasyesnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesyesyesnononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoYesNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Strategic
    • Strategic
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipalityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Other
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Efficiency measures,
    • Waste management,
    • Water treatment,
    • Lighting,
    • E-mobility,
    • Green areas,
    • Circular economy models
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    • Monitoring and evaluation infrastructure
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    • Available data
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Social,
    • Economical / Financial
    • Energy
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    • Energy modelling
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
    C1P001: Storage systems and E-mobility market penetration2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
    C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important4 - Important5 - Very important2 - Slightly important5 - Very important5 - Very important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important5 - Very important
    C1P001: Social acceptance (top-down)4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important4 - Important
    C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important4 - Important2 - Slightly important5 - Very important2 - Slightly important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important4 - Important3 - Moderately important5 - Very important2 - Slightly important5 - Very important3 - Moderately important
    C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important4 - Important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Territorial and market attractiveness3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Energy autonomy/independence4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P003: Lack of public participation1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P003: Fragmented and or complex ownership structure5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P007: Deficient planning1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Retrofitting work in dwellings in occupied state5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P007: Difficult definition of system boundaries5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P008: Rebound effect3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P010: Economic crisis3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P011: Energy price distortion3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P011: Any other Market BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Construction/implementation
    • Design/demand aggregation
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • None
    • Planning/leading
    C1P012: Urban Services providers
    • Construction/implementation
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Construction/implementation
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • None
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Monitoring/operation/management
    • None
    • None
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)