Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Freiburg, Waldsee
Bologna, Pilastro-Roveri district
Maia, Sobreiro Social Housing
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Izmir, District of Karşıyaka
Lubia (Soria), CEDER-CIEMAT
Vidin, Himik and Bononia
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkFreiburg, WaldseeBologna, Pilastro-Roveri districtMaia, Sobreiro Social HousingRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranIzmir, District of KarşıyakaLubia (Soria), CEDER-CIEMATVidin, Himik and Bononia
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnononoyesnoyes
PED relevant case studyyesyesnoyesnoyesnonono
PED Lab.yesyesnonoyesnonoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesnoyes
Annual energy surplusnononononoyesyesnoyes
Energy communitynonoyesyesnonononono
Circularityyesnononononononono
Air quality and urban comfortnononononoyesyesyesno
Electrificationyesnoyesnononononono
Net-zero energy costnonononononoyesnono
Net-zero emissionyesnoyesnonononoyesno
Self-sufficiency (energy autonomous)nononononononoyesno
Maximise self-sufficiencyyesyesnonoyesnoyesnono
Othernonononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1611/2211/2109/1910/2101/2210/2211/1912/18
A1P007: End Date
A1P007: End date07/2211/2511/2410/2310/2401/2410/2512/2312/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
        A1P011: Geographic coordinates
        X Coordinate (longitude):26.72273710.0077.88585713584291711.397323-8.3735573.165127.110049-2.50822.8826
        Y Coordinate (latitude):58.38071357.04102847.98653520708004544.50710641.13580450.693738.49605441.60343.9936
        A1P012: Country
        A1P012: CountryEstoniaDenmarkGermanyItalyPortugalFranceTurkeySpainBulgaria
        A1P013: City
        A1P013: CityTartuAalborgFreiburg im BreisgauBolognaMaiaRoubaixİzmirLubia - SoriaVidin
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCfbCfaCsbCfbCsaCfbCfa
        A1P015: District boundary
        A1P015: District boundaryFunctionalVirtualVirtualGeographicVirtualOtherGeographicGeographicGeographic
        OtherPEB
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedMixedPublicPrivatePrivatePublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED182941196222121674
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]35217284070144210279598759.53
        A1P020: Total ground area
        A1P020: Total ground area [m²]79314431308000492000078000002500326006400000195234.80
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000001301
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonononoyesnonono
        A1P022a: Add the value in EUR if available [EUR]65000000
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononoyesnononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingyesnononononononono
        A1P022d: Add the value in EUR if available [EUR]4000000
        A1P022e: Financing - PUBLIC - National fundingyesnonoyesyesnononoyes
        A1P022e: Add the value in EUR if available [EUR]8000000
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesyesyesnonono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnoyesnonono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesyesnono
        A1P022i: Add the value in EUR if available [EUR]1193355
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnononoyesyesno
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesnononoyesno
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherRetrofitted through various subsidies
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.6
        Contact person for general enquiries
        A1P026: NameJaanus TammKristian OlesenDr. Annette SteingrubeProf. Danila LongoAdelina RodriguesJulien HolgardOzlem SenyolDr. Raquel RamosDaniela Kostova
        A1P027: OrganizationTartu City GovernmentAalborg UniversityFraunhofer Institute for solar energy systemsUniversity of Bologna - Architecture DepartmentMaia Municipality (CM Maia) – Energy and Mobility divisionVilogiaKarsiyaka MunicipalityCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)Green Synergy Cluster
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesOtherMunicipality / Public BodiesResearch Center / UniversityOther
        A1P028: OtherSocial Housing CompanyCluster
        A1P029: EmailJaanus.tamm@tartu.eeKristian@plan.aau.dkAnnette.Steingrube@ise.fraunhofer.dedscm.adelina@cm-maia.ptjulien.holgard@vilogia.frozlemkocaer2@gmail.comraquel.ramos@ciemat.esdaniela@greensynergycluster.eu
        Contact person for other special topics
        A1P030: NameKaspar AlevAlex Søgaard MorenoCarolina Gonçalves (AdEPorto)Julien HolgardHasan Burak CavkaDr. Oscar Seco
        A1P031: EmailKaspar.alev@tartu.eeasm@aalborg.dkcarolinagoncalves@adeporto.eujulien.holgard@vilogia.frhasancavka@iyte.edu.troscar.seco@ciemat.es
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.)
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Stakeholder engagement, expert energy system analysis, future scenariosEnergy system modelingEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoYesYesNoNoYesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYesYesYesYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the calculations.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.1218135.7153.862
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]14831.761.226
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesyesyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
        A2P011: Windnoyesnononononoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononoyesno
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononoyesno
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernoyesnonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononononoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnonoyesyesnonoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
        A2P012: Biomass_heatnononoyesnononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnoyesnononononoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononononoyesno
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.53 MW PV potential in all three quarters; no other internal renewable energy potentials known
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]620132.50.0845.088
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]3990.11
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononoyesnono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernoyesnonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononoyesnono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
        A2P018: Windnonononononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000001.454031117397500
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]980
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobilityyes
        A2P022: Energyyes
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Communityyes
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnoyesyesyesyesnonoyesno
        A2P023: Wind Turbinesnononononononoyesno
        A2P023: Geothermal energy systemnonoyesyesnononoyesyes
        A2P023: Waste heat recoverynoyesyesnonononoyesno
        A2P023: Waste to energynoyesyesyesnonononono
        A2P023: Polygenerationnononononononoyesno
        A2P023: Co-generationnonoyesyesnononoyesno
        A2P023: Heat Pumpnoyesyesyesyesnoyesyesyes
        A2P023: Hydrogennonoyesnonononoyesno
        A2P023: Hydropower plantnonoyesnonononoyesno
        A2P023: Biomassyesyesyesnonononoyesno
        A2P023: Biogasyesnoyesnononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyesnonoyesno
        A2P024: Energy management systemyesyesyesnoyesnonoyesno
        A2P024: Demand-side managementnoyesyesnonononoyesno
        A2P024: Smart electricity gridnoyesyesnonononoyesno
        A2P024: Thermal Storagenoyesyesnonononoyesno
        A2P024: Electric Storagenoyesyesyesyesnonoyesyes
        A2P024: District Heating and Coolingyesyesyesyesnononoyesno
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnoyesyesnoyesno
        A2P024: P2P – buildingsnonoyesnononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingyesyesyesyesyesyesyesyesyes
        A2P025: Energy efficiency measures in historic buildingsnonoyesnononononono
        A2P025: High-performance new buildingsnononoyesnonononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesyesnononono
        A2P025: Urban data platformsyesnoyesnononononono
        A2P025: Mobile applications for citizensyesnonoyesnonononono
        A2P025: Building services (HVAC & Lighting)nononoyesyesnoyesyesno
        A2P025: Smart irrigationnonononononononono
        A2P025: Digital tracking for waste disposalnononoyesyesnononono
        A2P025: Smart surveillanceyesyesnoyesnonononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnoyesyesyesnononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesyesnonononono
        A2P026: e-Mobilityyesnoyesyesyesnononono
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesnonononono
        A2P026: Car-free areanononononononoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYesYesNoNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate for each dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030Climate neutrality by 2035City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Other
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDecarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyBologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Life Cycle Cost,
        • Circular economy models
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • Innovative business models,
        • PPP models,
        • Circular economy models,
        • Demand management Living Lab,
        • Existing incentives
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Demand management Living Lab
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Policy Forums,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Affordability,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • SECAP Updates
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Net zero carbon footprint,
        • Pollutants Reduction
        • Energy Neutral
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Pollutants Reduction,
        • Greening strategies
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their ownPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.Refurbishment of social housing
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban areaUrban areaRuralUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction19582005
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential450016.9315898
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential5898
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.0011987804878049000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnoyesyesnoyesyesnoyes
        B1P013 - Residential: Specify the sqm [m²]10279564 787,57
        B1P013: Officenonoyesyesnonononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonoyesyesnonononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialyesnoyesyesnonononoyes
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonoyesyesnonononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnoyesyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalyesnoyesyesnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononoyesnonononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesnoyesyesnoyesyesnono
        B1P014 - Residential: Specify the sqm [m²]102795
        B1P014: Officenonoyesyesnonononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonoyesyesnonononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnoyesyesnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesyesnonononoyes
        B1P014 - Institutional: Specify the sqm [m²]35322.21
        B1P014: Natural areasyesnoyesyesnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnoyesyesnonononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononoyesnonononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
        B2P002: Installation life time
        B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.Permanent installationCEDER will follow an integrative approach including technology for a permanent installation.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrictVirtualDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationKristian OlesenCM Maia, IPMAIA, NEW, AdEP.CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Civic
        • Strategic
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        • Academia,
        • Private
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO,
        • Other
        • Academia,
        • Industrial
        B2P009: OtherEnergy Agency
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Efficiency measures,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        • Monitoring and evaluation infrastructure,
        • Tools, spaces, events for testing and validation
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data,
        • Life Cycle Analysis
        • Execution plan,
        • Available data,
        • Type of measured data
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
        B2P017: Capacities
        B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.CEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
        B2P019: Available tools
        B2P019: Available tools
        • Social models
        • Energy modelling,
        • Social models,
        • Business and financial models,
        • Fundraising and accessing resources,
        • Matching actors
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration2 - Slightly important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P001: Social acceptance (top-down)4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P002: Energy autonomy/independence4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P003: Lack of public participation1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P003: Fragmented and or complex ownership structure5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 13 - Moderately important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P007: Deficient planning1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
        C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
        C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant4 - Important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P007: Difficult definition of system boundaries5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
        C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
        C1P008: Rebound effect3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
        C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P010: Economic crisis3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P010: Risk and uncertainty4 - Important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important
        C1P010: Limited access to capital and cost disincentives4 - Important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important2 - Slightly important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P011: Energy price distortion3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • None
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading
        • None
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • Construction/implementation
        • None
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        C1P012: Real Estate developers
        • None
        • None
        • None
        • None
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • None
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)