Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Riga, Ķīpsala, RTU smart student city
Aarhus, Brabrand
Vantaa, Aviapolis
Ankara, Çamlık District
Munich, Harthof district
Umeå, Ålidhem district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaRiga, Ķīpsala, RTU smart student cityAarhus, BrabrandVantaa, AviapolisAnkara, Çamlık DistrictMunich, Harthof districtUmeå, Ålidhem district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesyesyes
PED relevant case studyyesnoyesyesyesnono
PED Lab.yesnoyesyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnonoyesnoyesyesno
Energy communitynoyesyesnoyesyesno
Circularityyesnonoyesnonono
Air quality and urban comfortnonononononono
Electrificationyesnononoyesnono
Net-zero energy costnonononoyesnono
Net-zero emissionyesnoyesnoyesnono
Self-sufficiency (energy autonomous)noyesnonononono
Maximise self-sufficiencyyesyesnonoyesnono
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1601/2401/2401/2310/2201/2310/22
A1P007: End Date
A1P007: End date07/2212/2612/2612/2709/2512/2709/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Umeå Energi
A1P011: Geographic coordinates
X Coordinate (longitude):26.72273724.0816833910.21340524.95882132.79536911.56962505994760420.2630
Y Coordinate (latitude):58.38071356.9524595656.14962860.30548839.88181248.2043626127515263.8258
A1P012: Country
A1P012: CountryEstoniaLatviaDenmarkFinlandTurkeyGermanySweden
A1P013: City
A1P013: CityTartuRigaAarhusVantaaAnkaraMunichUmeå
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbCfbDfbDsbCfbDfb
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedMixedPrivateMixedPublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED1815257126
A1P019: Conditioned space
A1P019: Conditioned space [m²]352171700002260020642000
A1P020: Total ground area
A1P020: Total ground area [m²]79314411926438810005080056052000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0100001
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnonoyesnonono
A1P022a: Add the value in EUR if available [EUR]6500000
A1P022b: Financing - PRIVATE - ESCO schemenonononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononoyesnonono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnononononono
A1P022d: Add the value in EUR if available [EUR]4000000
A1P022e: Financing - PUBLIC - National fundingyesnononononono
A1P022e: Add the value in EUR if available [EUR]8000000
A1P022f: Financing - PUBLIC - Regional fundingnonononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnoyesno
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesyesyesno
A1P022i: Add the value in EUR if available [EUR]7500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Boosting local and sustainable production
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Boosting local and sustainable production
A1P023: Other
A1P024: More comments:
A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
Contact person for general enquiries
A1P026: NameJaanus TammJudith StiekemaJohanne Bräuner Nygaard HansenEira LinkoProf. Dr. İpek Gürsel DİNOStefan SynekGireesh Nair
A1P027: OrganizationTartu City GovernmentOASCITK, the city of AarhusCity of VantaaMiddle East Technical UniversityCity of MunichUmea Municipality
A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public Bodies
A1P028: Othernot for profit private organisationAndreas Bärnreuther
A1P029: EmailJaanus.tamm@tartu.eejudith@oascities.orghjobr@aarhus.dkeira.linko@vantaa.fiipekg@metu.edu.trstefan.synek@muenchen.degireesh.nair@umu.se
Contact person for other special topics
A1P030: NameKaspar AlevAssoc. Prof. Onur TaylanStefan Synek
A1P031: EmailKaspar.alev@tartu.eeotaylan@metu.edu.trstefan.synek@muenchen.de
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials,
  • Other
  • Energy efficiency,
  • Energy production,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Simulation tools: City Energy Analyst and Polysun
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoYesNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Not determined yetThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.180003.446
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50000.5280
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnonoyesyesyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]3.42400.249
A2P011: Windnoyesnonononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnoyesnonononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnononoyesnonono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesnonononoyesno
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
A2P012: Biomass_heatnoyesnonononono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnononoyesnonono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnonononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]3.9766.1
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnoyesnonoyesyesno
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononoyesno
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononoyesnoyesno
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononoyesnoyesno
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononoyesnonono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononoyesnoyesno
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononoyesno
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononoyesno
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononoyesno
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononoyesnoyesyes
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononoyesnoyesyes
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]980
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: Mobility
A2P022: EnergyEnergyEnergy
A2P022: Water
A2P022: Economic development
A2P022: Housing and Community
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesnonoyesyesyesyes
A2P023: Solar thermal collectorsnonononononono
A2P023: Wind Turbinesnonononononono
A2P023: Geothermal energy systemnononoyesnoyesno
A2P023: Waste heat recoverynononoyesnonono
A2P023: Waste to energynononoyesnonono
A2P023: Polygenerationnononoyesnonono
A2P023: Co-generationnonononononono
A2P023: Heat Pumpnononoyesyesyesno
A2P023: Hydrogennonononononono
A2P023: Hydropower plantnonononononono
A2P023: Biomassyesnonoyesnonono
A2P023: Biogasyesnononononono
A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnoyesyes
A2P024: Energy management systemyesyesnoyesnoyesno
A2P024: Demand-side managementnoyesnoyesnonoyes
A2P024: Smart electricity gridnoyesnoyesnonono
A2P024: Thermal Storagenoyesnoyesnoyesno
A2P024: Electric Storagenoyesnoyesnoyesno
A2P024: District Heating and Coolingyesyesnoyesnoyesno
A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesno
A2P024: P2P – buildingsnonononononono
A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.District Heating
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesnononoyesyesyes
A2P025: Energy efficiency measures in historic buildingsnonononononono
A2P025: High-performance new buildingsnononoyesnonono
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononono
A2P025: Urban data platformsyesyesnononoyesno
A2P025: Mobile applications for citizensyesyesnonononono
A2P025: Building services (HVAC & Lighting)noyesnoyesyesnono
A2P025: Smart irrigationnonononononono
A2P025: Digital tracking for waste disposalnonononononono
A2P025: Smart surveillanceyesnononononono
A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnonoyesnonono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnonono
A2P026: e-Mobilityyesnonoyesnoyesno
A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesno
A2P026: Car-free areanonononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesNoYesNoYesYes
A2P028: If yes, please specify and/or enter notes
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),City wide climate neutrality by 2035, city administration climate neutrality by 2030
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: OtherNA
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
  • Open data business models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Digital twinning and visual 3D models
  • Strategic urban planning,
  • SECAP Updates
  • Digital twinning and visual 3D models,
  • District Energy plans
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone
  • Carbon-free
A3P009: OtherEnergy Positive, Low Emission Zone
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsdecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.Munich as demonstrator together with Lyon in ASCEND project
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.PED-ACT project.speed and scale of PEDs
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction,
  • Renovation
  • Renovation
  • Renovation
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development
  • Retrofitting Area
  • Retrofitting Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction1986
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential45006
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential6
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention0000000
B1P012: Population density after intervention
B1P012: Population density after intervention000000.0107142857142860
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnonoyesyesyesyes
B1P013 - Residential: Specify the sqm [m²]50800
B1P013: Officenononoyesnonono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynononoyesnonono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnonoyesnonono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononoyesnonono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnononononono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalyesnonoyesnonono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononoyesnonono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnonoyesyesyesyes
B1P014 - Residential: Specify the sqm [m²]50800
B1P014: Officenononoyesnonono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononoyesnonono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonoyesnonono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononoyesnonono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnononononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnonoyesnonono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrictDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
  • Strategic
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
  • Academia,
  • Private,
  • Citizens, public, NGO
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Social models
  • Energy modelling,
  • Decision making models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
C1P001: Presence of integrated urban strategies and plans5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration4 - Important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
C1P002: Territorial and market attractiveness3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
C1P002: Energy autonomy/independence4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
C1P003: Fragmented and or complex ownership structure5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P007: Deficient planning1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Lack/cost of computational scalability3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
C1P007: Grid congestion, grid instability2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Difficult definition of system boundaries5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
C1P008: Low acceptance of new projects and technologies2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P008: Rebound effect3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
C1P010: Economic crisis3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
C1P010: Risk and uncertainty4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading
  • None
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • None
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • None
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Urban Services providers
  • Construction/implementation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading
C1P012: Real Estate developers
  • None
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Monitoring/operation/management
  • None
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Construction/implementation
  • Planning/leading
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)