Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Lubia (Soria), CEDER-CIEMAT
Stor-Elvdal, Campus Evenstad
Luxembourg, Betzdorf
Lund, Brunnshög district
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaLubia (Soria), CEDER-CIEMATStor-Elvdal, Campus EvenstadLuxembourg, BetzdorfLund, Brunnshög districtIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyes
PED relevant case studyyesnoyesyesnono
PED Lab.yesyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyes
Annual energy surplusnonoyesyesyesyes
Energy communitynononoyesyesno
Circularityyesnonoyesyesno
Air quality and urban comfortnoyesnoyesyesyes
Electrificationyesnonoyesyesno
Net-zero energy costnononononoyes
Net-zero emissionyesyesnonoyesno
Self-sufficiency (energy autonomous)noyesnononono
Maximise self-sufficiencyyesnonononoyes
Othernonoyesnoyesno
Other (A1P004)Energy-flexibilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseIn operationImplementation PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date02/1611/1901/1306/23201510/22
A1P007: End Date
A1P007: End date07/2212/2312/2404/26204010/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: OtherGIS open dataset is under constructionOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
A1P011: Geographic coordinates
X Coordinate (longitude):26.722737-2.50811.0787707735317466.36160213.23246940076959927.110049
Y Coordinate (latitude):58.38071341.60361.4260442039911249.68277455.7198979220719338.496054
A1P012: Country
A1P012: CountryEstoniaSpainNorwayLuxembourgSwedenTurkey
A1P013: City
A1P013: CityTartuLubia - SoriaEvenstad, Stor-Elvdal municipalityBetzdorfLundİzmir
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDwcCfbDfbCsa
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivatePublicPublicPublicPublicPrivate
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED186222420021
A1P019: Conditioned space
A1P019: Conditioned space [m²]3521710000173.81500000102795
A1P020: Total ground area
A1P020: Total ground area [m²]7931446400000150000032600
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000013
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnononoyesno
A1P022a: Add the value in EUR if available [EUR]650000099999999
A1P022b: Financing - PRIVATE - ESCO schemenononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnononoyesno
A1P022d: Add the value in EUR if available [EUR]40000001000000
A1P022e: Financing - PUBLIC - National fundingyesnoyesnoyesno
A1P022e: Add the value in EUR if available [EUR]800000030000000
A1P022f: Financing - PUBLIC - Regional fundingnonononoyesno
A1P022f: Add the value in EUR if available [EUR]30000000
A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesno
A1P022g: Add the value in EUR if available [EUR]180000000
A1P022h: Financing - PUBLIC - Othernononoyesnono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesyes
A1P022i: Add the value in EUR if available [EUR]20000001193355
A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnonoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Other
  • Other
  • Positive externalities,
  • Boosting local and sustainable production
A1P023: OtherWorld class sustainable living and research environments
A1P024: More comments:
A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
Contact person for general enquiries
A1P026: NameJaanus TammDr. Raquel RamosÅse Lekang SørensenJulien BertucciMarkus PaulssonOzlem Senyol
A1P027: OrganizationTartu City GovernmentCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)SINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesSNHBMCity of LundKarsiyaka Municipality
A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public Bodies
A1P028: Other
A1P029: EmailJaanus.tamm@tartu.eeraquel.ramos@ciemat.esase.sorensen@sintef.nojulien.bertucci@snhbm.lumarkus.paulsson@lund.seozlemkocaer2@gmail.com
Contact person for other special topics
A1P030: NameKaspar AlevDr. Oscar SecoEva DalmanHasan Burak Cavka
A1P031: EmailKaspar.alev@tartu.eeoscar.seco@ciemat.eseva.dalman@lund.sehasancavka@iyte.edu.tr
Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Waste management,
  • Construction materials,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.)
A2P001: OtherWalkability and biking
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoYesNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Mobility is not included in the calculations.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.77253.862
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.76301.226
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesnoyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.0651.028
A2P011: Windnoyesnonoyesno
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronoyesnononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnoyesyesnonono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
A2P011: Biomass_peat_elnononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnoyesnononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesyesyesnonono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.50.045
A2P012: Biomass_heatnoyesyesnonono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
A2P012: Waste heat+HPnoyesnonoyesno
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
A2P012: Biomass_peat_heatnononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnoyesnononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]1.5005.088
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]1
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononoyes
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonononoyesyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
A2P018: Windnonononoyesno
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononoyesno
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononoyesno
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000001.4540311173975
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]980
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: MobilityMaximum 1/3 transport with car
A2P022: EnergyLocal energy production 150% of energy need
A2P022: Water
A2P022: Economic development
A2P022: Housing and Community50% rental apartments and 50% owner apartments
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesnoyesyes
A2P023: Solar thermal collectorsnoyesyesnoyesno
A2P023: Wind Turbinesnoyesnonoyesno
A2P023: Geothermal energy systemnoyesnonoyesno
A2P023: Waste heat recoverynoyesnonoyesno
A2P023: Waste to energynononononono
A2P023: Polygenerationnoyesnonoyesno
A2P023: Co-generationnoyesyesnonono
A2P023: Heat Pumpnoyesnonoyesyes
A2P023: Hydrogennoyesnonoyesno
A2P023: Hydropower plantnoyesnononono
A2P023: Biomassyesyesyesnonono
A2P023: Biogasyesnonononono
A2P023: OtherThe Co-generation is biomass based.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesno
A2P024: Energy management systemyesyesyesyesyesno
A2P024: Demand-side managementnoyesyesnoyesno
A2P024: Smart electricity gridnoyesnonoyesno
A2P024: Thermal Storagenoyesyesnoyesno
A2P024: Electric Storagenoyesyesyesyesno
A2P024: District Heating and Coolingyesyesyesnoyesno
A2P024: Smart metering and demand-responsive control systemsnoyesyesnoyesno
A2P024: P2P – buildingsnononononono
A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesnononoyes
A2P025: Energy efficiency measures in historic buildingsnononononono
A2P025: High-performance new buildingsnonoyesyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononoyesno
A2P025: Urban data platformsyesnononoyesno
A2P025: Mobile applications for citizensyesnonononono
A2P025: Building services (HVAC & Lighting)noyesnoyesyesyes
A2P025: Smart irrigationnononononono
A2P025: Digital tracking for waste disposalnonononoyesno
A2P025: Smart surveillanceyesnonononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnonononono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononoyesno
A2P026: e-Mobilityyesnoyesyesyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesno
A2P026: Car-free areanoyesnonoyesno
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesWalkability
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesYesNo
A2P028: If yes, please specify and/or enter notesIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)Miljöbyggnad silver/guld
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoYesYesNoNo
A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.City strategy: Net climate neutrality 2030Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: OtherNo gas grid in Brunnshög
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Demand management Living Lab
  • PPP models,
  • Other
A3P006: OtherAttractivenes
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Behavioural Change / End-users engagement,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
  • Other
  • Affordability
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Quality of Life,
  • Strategies towards social mix
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • District Energy plans,
  • Building / district Certification
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050,
  • SECAP Updates
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • SECAP Updates
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Low Emission Zone
  • Net zero carbon footprint,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaRuralRuralRuralUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction,
  • Renovation
  • New construction,
  • Renovation
  • New construction
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • New Development
  • New Development
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction2005
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential45000
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential18000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential2000
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential22000
B1P011: Population density before intervention
B1P011: Population density before intervention000000
B1P012: Population density after intervention
B1P012: Population density after intervention00000.0266666666666670
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnonononoyes
B1P013 - Residential: Specify the sqm [m²]102795
B1P013: Officenonononoyesno
B1P013 - Office: Specify the sqm [m²]60000
B1P013: Industry and Utilitynononononono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnonononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnononoyesno
B1P013 - Natural areas: Specify the sqm [m²]2000000
B1P013: Recreationalyesnonononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononoyesno
B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnononoyesyes
B1P014 - Residential: Specify the sqm [m²]600000102795
B1P014: Officenonononoyesno
B1P014 - Office: Specify the sqm [m²]650000
B1P014: Industry and Utilitynononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonononono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononoyesno
B1P014 - Institutional: Specify the sqm [m²]50000
B1P014: Natural areasyesnonononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnononoyesno
B1P014 - Recreational: Specify the sqm [m²]400000
B1P014: Dismissed areasnononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
B2P003: Scale of action
B2P003: ScaleDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
  • Academia,
  • Industrial
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT),
  • Ambient measures,
  • Social interactions
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
B2P019: Available tools
B2P019: Available tools
  • Social models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
C1P001: Social acceptance (top-down)4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
C1P002: Energy autonomy/independence4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P005: Non-effective regulations4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers3 - Moderately important?- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P007: Deficient planning1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P007: Retrofitting work in dwellings in occupied state5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P007: Lack/cost of computational scalability3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P007: Difficult definition of system boundaries5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P008: Lack of trust beyond social network2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P008: Rebound effect3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P009: Lack of awareness among authorities2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important
C1P010: Economic crisis3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
C1P010: Risk and uncertainty4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important
C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • None
  • Construction/implementation
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Urban Services providers
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • None
  • None
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • None
  • None
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)