Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Leon, Former Sugar Factory district
Borlänge, Rymdgatan’s Residential Portfolio
Oulu, Kaukovainio
Riga, Ķīpsala, RTU smart student city
Freiburg, Waldsee
Zaragoza, Actur
Luxembourg, Betzdorf
Ankara, Çamlık District
Groningen, PED South
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaLeon, Former Sugar Factory districtBorlänge, Rymdgatan’s Residential PortfolioOulu, KaukovainioRiga, Ķīpsala, RTU smart student cityFreiburg, WaldseeZaragoza, ActurLuxembourg, BetzdorfAnkara, Çamlık DistrictGroningen, PED South
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyesyesnonoyesno
PED relevant case studyyesnoyesnononoyesyesyesno
PED Lab.yesnonononononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnononoyesyesyesyes
Energy communitynonoyesnoyesyesnoyesyesyes
Circularityyesnonoyesnononoyesnoyes
Air quality and urban comfortnononononononoyesnono
Electrificationyesnoyesyesnoyesyesyesyesno
Net-zero energy costnonononononononoyesno
Net-zero emissionyesnonononoyesyesnoyesyes
Self-sufficiency (energy autonomous)nonononoyesnonononono
Maximise self-sufficiencyyesyesyesnoyesnononoyesno
Othernononononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/1612/1801/2411/2101/2306/2310/2212/18
A1P007: End Date
A1P007: End date07/2212/2312/2611/2404/2609/2512/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
    • TNO, Hanze, RUG,
    • Ped noord book
    A1P011: Geographic coordinates
    X Coordinate (longitude):26.722737-5.58479515.39449525.51759508409350724.081683397.885857135842917-0.88916.36160232.7953696.590655
    Y Coordinate (latitude):58.38071342.59339160.48660964.9928809817313256.9524595647.98653520708004541.648849.68277439.88181253.204087
    A1P012: Country
    A1P012: CountryEstoniaSpainSwedenFinlandLatviaGermanySpainLuxembourgTurkeyNetherlands
    A1P013: City
    A1P013: CityTartuLeonBorlängeOuluRigaFreiburg im BreisgauZaragozaBetzdorfAnkaraGroningen
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbCsbDsbDfcCfbCfbBSkCfbDsbCfa
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicVirtualGeographicGeographicGeographicFunctional
    OtherRegional (close to virtual)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedMixedPublicMixedPublicPublicPrivateMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED18211061529416242574
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]3521716.06900370019700170000284070173.8226007.86
    A1P020: Total ground area
    A1P020: Total ground area [m²]79314473.1456999456000011926449200005080045.093
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0000100000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnonoyesnononononoyes
    A1P022a: Add the value in EUR if available [EUR]6500000
    A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononononononoyes
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingyesnonononononononono
    A1P022d: Add the value in EUR if available [EUR]4000000
    A1P022e: Financing - PUBLIC - National fundingyesnonononononononoyes
    A1P022e: Add the value in EUR if available [EUR]8000000
    A1P022f: Financing - PUBLIC - Regional fundingnononononononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnoyesnononoyes
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononononoyesnono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnononoyesyesyesnonoyesyes
    A1P022i: Add the value in EUR if available [EUR]7500000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnonoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities
    • Positive externalities,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Boosting local and sustainable production
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Other
    • Boosting local and sustainable production
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: OtherDeveloping and demonstrating new solutions
    A1P024: More comments:
    A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]255
    Contact person for general enquiries
    A1P026: NameJaanus TammBegoña Gonzalo OrdenJingchun ShenSamuli RinneJudith StiekemaDr. Annette SteingrubeClara LorenteJulien BertucciProf. Dr. İpek Gürsel DİNOJasper Tonen, Elisabeth Koops
    A1P027: OrganizationTartu City GovernmentMunicipality of LeonHögskolan DalarnaCity of OuluOASCFraunhofer Institute for solar energy systemsCIRCESNHBMMiddle East Technical UniversityMunicipality of Groningen
    A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public Bodies
    A1P028: OtherMunicipality of Leon - ILRUVnot for profit private organisation
    A1P029: EmailJaanus.tamm@tartu.eebegona.gonzalo@aytoleon.esjih@du.sesamuli.rinne@ouka.fijudith@oascities.orgAnnette.Steingrube@ise.fraunhofer.deCLORENTEM@FCIRCE.COMjulien.bertucci@snhbm.luipekg@metu.edu.trJasper.tonen@groningen.nl
    Contact person for other special topics
    A1P030: NameKaspar AlevMonica Prada CorralXingxing ZhangSamuli RinneAssoc. Prof. Onur Taylan
    A1P031: EmailKaspar.alev@tartu.eeMonica.Prada@ilruv.esxza@du.sesamuli.rinne@ouka.fiotaylan@metu.edu.tr
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy system modelingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoNoNoYesYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYesYesNoYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesYesNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the calculations.Mobility, till now, is not included in the energy model.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.13.490.67772.18000135.7153.4461.86
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.570.036560.2500031.760.5281.45
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnoyesnonononoyesno
    A2P011: PV - specify production in GWh/annum [GWh/annum]1.240.13.4240
    A2P011: Windnonononoyesnonononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronoyesnononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
    A2P011: Biomass_elnononononononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnoyesyesnoyesnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.280.01818
    A2P011: Othernononononononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnononononononononoyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalyesnonononononononoyes
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnonononoyesnonononoyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnononoyesnononononoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
    A2P012: Biomass_peat_heatnononononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnoyesyesnonononononoyes
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
    A2P012: Biomass_firewood_thnononononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernoyesnononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.53 MW PV potential in all three quarters; no other internal renewable energy potentials knownGeothermal heatpump systems, Waste heat from data centers
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.3182.3132.53.976
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.2055
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononoyesnononoyesno
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonoyesnonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononoyesnononononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnononoyesnononononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononoyesnononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononoyesnononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononoyesnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonoyesnonononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononoyesnononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnononononononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonoyesnonononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000.538395721925133.2857142857143000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]9806.930
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securitynone
    A2P022: Healththermal comfort diagramEncouraging a healthy lifestyle
    A2P022: Educationnone
    A2P022: MobilitynoneModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingyes
    A2P022: Energynormalized CO2/GHG & Energy intensityFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionyes
    A2P022: Water
    A2P022: Economic developmentcost of excess emissionsTotal investments, Payback time, Economic value of savings
    A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyyes
    A2P022: WasteRecycling rate
    A2P022: OtherSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesnoyesyesnoyesyes
    A2P023: Solar thermal collectorsnoyesyesnonoyesnononoyes
    A2P023: Wind Turbinesnononononononononono
    A2P023: Geothermal energy systemnonoyesnonoyesyesnonoyes
    A2P023: Waste heat recoverynonoyesyesnoyesnononoyes
    A2P023: Waste to energynononononoyesnononoyes
    A2P023: Polygenerationnononononononononono
    A2P023: Co-generationnononoyesnoyesnononono
    A2P023: Heat Pumpnoyesyesyesnoyesyesnoyesyes
    A2P023: Hydrogennononononoyesnononono
    A2P023: Hydropower plantnoyesnononoyesnononono
    A2P023: Biomassyesnonoyesnoyesnononono
    A2P023: Biogasyesnonononoyesnononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesnoyesnoyes
    A2P024: Energy management systemyesyesnoyesyesyesyesyesnoyes
    A2P024: Demand-side managementnoyesnonoyesyesnononono
    A2P024: Smart electricity gridnonononoyesyesnononono
    A2P024: Thermal Storagenonoyesyesyesyesnononoyes
    A2P024: Electric Storagenonononoyesyesnoyesnoyes
    A2P024: District Heating and Coolingyesnoyesyesyesyesnononoyes
    A2P024: Smart metering and demand-responsive control systemsnonononoyesyesnononoyes
    A2P024: P2P – buildingsnoyesnononoyesnononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesyesyesyesnoyesnonoyesno
    A2P025: Energy efficiency measures in historic buildingsnoyesnononoyesnononoyes
    A2P025: High-performance new buildingsnononoyesnononoyesnoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononononononoyes
    A2P025: Urban data platformsyesyesnoyesyesyesnononoyes
    A2P025: Mobile applications for citizensyesnononoyesnonononono
    A2P025: Building services (HVAC & Lighting)nonoyesyesyesnonoyesyesno
    A2P025: Smart irrigationnononononononononono
    A2P025: Digital tracking for waste disposalnononononononononono
    A2P025: Smart surveillanceyesnonononononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesyesnoyesnoyesnononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnoyesnononono
    A2P026: e-Mobilityyesyesnoyesnoyesyesyesnoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyesnoyesnononono
    A2P026: Car-free areanononononononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoYesNoNoYesYesNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)The obligatory buildijng energy classificationEnergy Performance Certificate
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoNoNoYesNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.)
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality by 2035Climate neutrality by 2035
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Developing and demonstrating solutions for carbon neutralityFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.E. g. visualizing energy and water consumptionEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • Open data business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Local trading
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Open data business models,
    • Innovative business models,
    • Demand management Living Lab
    • Demand management Living Lab,
    • Local trading,
    • Existing incentives
    • Innovative business models,
    • Blockchain
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Affordability,
    • Digital Inclusion
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Digital twinning and visual 3D models
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Sustainable Urban drainage systems (SUDS)
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral
    A3P009: OtherEnergy Positive, Low Emission Zone
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The original idea is that the area produces at least as much it consumes.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyÇamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.Developing systems towards carbon neutrality. Also urban renewal.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardPED-ACT project.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaSuburban areaUrban areaRuralSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction,
    • Renovation
    • Renovation
    • New construction,
    • Renovation
    • Renovation
    • Renovation
    • New construction,
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area,
    • Preservation Area
    • Re-use / Transformation Area,
    • Retrofitting Area
    • New Development,
    • Retrofitting Area
    • Retrofitting Area
    • Retrofitting Area
    • New Development
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction19901986
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential450010035005898
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential10035005898
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential6
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential6
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.0106586224233280.05833333333333300.00119878048780490000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesyesyesyesnoyesnonoyesno
    B1P013 - Residential: Specify the sqm [m²]436050800
    B1P013: Officenononononoyesnononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononononoyesnononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialyesnonoyesnoyesnononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononononoyesnononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesnonoyesnoyesnononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalyesnonoyesnoyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernoyesyesnonononononono
    B1P013 - Other: Specify the sqm [m²]706
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesyesnoyesnonoyesno
    B1P014 - Residential: Specify the sqm [m²]436050800
    B1P014: Officenononononoyesnononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononononoyesnononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesnonoyesnoyesnononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononononoyesnononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasyesnonoyesnoyesnononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesnonoyesnoyesnononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernoyesyesnonononononono
    B1P014 - Other: Specify the sqm [m²]706
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Other
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important
    C1P001: Social acceptance (top-down)4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important4 - Important
    C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Energy autonomy/independence4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
    C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Non-effective regulations4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers2 - Slightly important- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P007: Deficient planning1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
    C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
    C1P008: Rebound effect3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
    C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Economic crisis3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
    C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
    C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
    C1P011: Energy price distortion3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • None
    • Planning/leading,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • None
    • Planning/leading
    C1P012: Urban Services providers
    • Construction/implementation
    • None
    • Planning/leading
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • None
    • Design/demand aggregation
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • None
    • Construction/implementation
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Design/demand aggregation
    • Construction/implementation
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)