Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
City of Espoo, Espoonlahti district, Lippulaiva block
Lund, Brunnshög district
Innsbruck, Campagne-Areal
Lubia (Soria), CEDER-CIEMAT
Borlänge, Rymdgatan’s Residential Portfolio
Umeå, Ålidhem district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaCity of Espoo, Espoonlahti district, Lippulaiva blockLund, Brunnshög districtInnsbruck, Campagne-ArealLubia (Soria), CEDER-CIEMATBorlänge, Rymdgatan’s Residential PortfolioUmeå, Ålidhem district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnononoyes
PED relevant case studyyesnonoyesnoyesno
PED Lab.yesnononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesnoyesyes
Annual energy surplusnonoyesnonoyesno
Energy communitynonoyesnonoyesno
Circularityyesnoyesnononono
Air quality and urban comfortnonoyesnoyesnono
Electrificationyesnoyesnonoyesno
Net-zero energy costnonononononono
Net-zero emissionyesnoyesyesyesnono
Self-sufficiency (energy autonomous)nonononoyesnono
Maximise self-sufficiencyyesyesnononoyesno
Othernonoyesnononono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationIn operationCompletedImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1606/18201504/1611/1910/22
A1P007: End Date
A1P007: End date07/2203/22204004/2212/2309/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
    • Umeå Energi
    A1P011: Geographic coordinates
    X Coordinate (longitude):26.72273724.654313.23246940076959911.424346738140256-2.50815.39449520.2630
    Y Coordinate (latitude):58.38071360.149155.7198979220719347.27147078672910441.60360.48660963.8258
    A1P012: Country
    A1P012: CountryEstoniaFinlandSwedenAustriaSpainSwedenSweden
    A1P013: City
    A1P013: CityTartuEspooLundInnsbruckLubia - SoriaBorlängeUmeå
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbDfbCfbDsbDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicGeographicGeographic
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivatePrivatePublicMixedPublicMixedPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1892004610
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]35217112000150000022277370042000
    A1P020: Total ground area
    A1P020: Total ground area [m²]7931441650001500000113516400000994552000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0112001
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesyesnononono
    A1P022a: Add the value in EUR if available [EUR]650000099999999
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingyesnoyesnononono
    A1P022d: Add the value in EUR if available [EUR]40000001000000
    A1P022e: Financing - PUBLIC - National fundingyesnoyesnononono
    A1P022e: Add the value in EUR if available [EUR]800000030000000
    A1P022f: Financing - PUBLIC - Regional fundingnonoyesnononono
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnononono
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnononono
    A1P022i: Add the value in EUR if available [EUR]3088752000000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Other
    • Job creation,
    • Other
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    A1P023: OtherWorld class sustainable living and research environmentsCreate affordable appartments for the citizens
    A1P024: More comments:
    A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsOwners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
    Contact person for general enquiries
    A1P026: NameJaanus TammElina EkelundMarkus PaulssonGeorgios DermentzisDr. Raquel RamosJingchun ShenGireesh Nair
    A1P027: OrganizationTartu City GovernmentCitycon OyjCity of LundUniversity of InnsbruckCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)Högskolan DalarnaUmea Municipality
    A1P028: AffiliationMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
    A1P028: Other
    A1P029: EmailJaanus.tamm@tartu.eeElina.ekelund@citycon.commarkus.paulsson@lund.seGeorgios.Dermentzis@uibk.ac.atraquel.ramos@ciemat.esjih@du.segireesh.nair@umu.se
    Contact person for other special topics
    A1P030: NameKaspar AlevElina EkelundEva DalmanDr. Oscar SecoXingxing Zhang
    A1P031: EmailKaspar.alev@tartu.eeElina.ekelund@citycon.comeva.dalman@lund.seoscar.seco@ciemat.esxza@du.se
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy production,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMSimulation tools: City Energy Analyst and Polysun
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesNoNoNoNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.15.5250.390.6777
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5.8300.6550.036560
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]00
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesyesyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.420.249
    A2P011: Windnonoyesnoyesnono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononoyesnono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononoyesnono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononoyesno
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnoyesnonoyesnono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalyesnononoyesnono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnonononoyesnono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnonoyesnoyesnono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononoyesno
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
    A2P012: Biomass_firewood_thnonononoyesnono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notes
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]11.30.960.3186.1
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]5.76-20.2055
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernononononoyesno
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonoyesnononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononoyesnononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonoyesnononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernoyesnononoyesno
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.260.187
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononononoyes
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononononoyes
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononoyesno
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary01.05323193916350000.538395721925130
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]98006.93
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securitynone
    A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.thermal comfort diagram
    A2P022: Educationnone
    A2P022: MobilityMaximum 1/3 transport with carnone
    A2P022: EnergyOn-site energy ratioLocal energy production 150% of energy needSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.normalized CO2/GHG & Energy intensityEnergy
    A2P022: Water
    A2P022: Economic developmentcost of excess emissions
    A2P022: Housing and Community50% rental apartments and 50% owner apartments
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnonoyesnoyesyesno
    A2P023: Wind Turbinesnonoyesnoyesnono
    A2P023: Geothermal energy systemnoyesyesnoyesyesno
    A2P023: Waste heat recoverynoyesyesnoyesyesno
    A2P023: Waste to energynonononononono
    A2P023: Polygenerationnonoyesnoyesnono
    A2P023: Co-generationnonononoyesnono
    A2P023: Heat Pumpnonoyesyesyesyesno
    A2P023: Hydrogennonoyesnoyesnono
    A2P023: Hydropower plantnonononoyesnono
    A2P023: Biomassyesnononoyesnono
    A2P023: Biogasyesnononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnoyesyesyes
    A2P024: Energy management systemyesyesyesnoyesnono
    A2P024: Demand-side managementnonoyesnoyesnoyes
    A2P024: Smart electricity gridnoyesyesnoyesnono
    A2P024: Thermal Storagenoyesyesyesyesyesno
    A2P024: Electric Storagenoyesyesnoyesnono
    A2P024: District Heating and Coolingyesnoyesyesyesyesno
    A2P024: Smart metering and demand-responsive control systemsnonoyesnoyesnono
    A2P024: P2P – buildingsnononoyesnonono
    A2P024: OtherDistrict Heating
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesnononoyesyesyes
    A2P025: Energy efficiency measures in historic buildingsnonononononono
    A2P025: High-performance new buildingsnoyesyesyesnonono
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesnononono
    A2P025: Urban data platformsyesnoyesnononono
    A2P025: Mobile applications for citizensyesnononononono
    A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesno
    A2P025: Smart irrigationnonononononono
    A2P025: Digital tracking for waste disposalnonoyesnononono
    A2P025: Smart surveillanceyesnononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnononononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesyesnononono
    A2P026: e-Mobilityyesyesyesnononono
    A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononono
    A2P026: Car-free areanonoyesnoyesnono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesWalkability
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesYesYesNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)Miljöbyggnad silver/guldTwo buildings are certified "Passive House new build"In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesNoNoNoNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.)
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies
    • Smart cities strategies,
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.City strategy: Net climate neutrality 2030- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    A3P003: OtherNo gas grid in BrunnshögDistrict heating based mainly on heat pumps and renewable sourcesNA
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • Innovative business models
    • PPP models,
    • Other
    • Demand management Living Lab
    • Open data business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Local trading
    A3P006: OtherAttractivenes
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Digital Inclusion,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Affordability,
    • Digital Inclusion
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    • District Energy plans,
    • Building / district Certification
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • Building / district Certification
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Other
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction,
    • Greening strategies
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Sustainable Urban drainage systems (SUDS)
    • Carbon-free
    A3P009: OtherCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Borlänge city has committed to become the carbon-neutral city by 2030.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaRuralUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • New construction
    • New construction
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • New Development
    • Re-use / Transformation Area,
    • New Development
    • Re-use / Transformation Area,
    • Retrofitting Area
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction202220221990
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential45000100
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential18000780100
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential20006
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential220006
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.0266666666666670.06871641265086800.0106586224233280
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnonononoyesyes
    B1P013 - Residential: Specify the sqm [m²]4360
    B1P013: Officenonoyesnononono
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynonononononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialyesyesnonononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesyesyesnononono
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalyesnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonoyesnonoyesno
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000706
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesyesnoyesyes
    B1P014 - Residential: Specify the sqm [m²]6000004360
    B1P014: Officenonoyesnononono
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynonononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesyesnoyesnonono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesyesnonono
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasyesnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesnoyesyesnonono
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononoyesno
    B1P014 - Other: Specify the sqm [m²]706
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Industrial
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Energy storage,
    • Energy networks,
    • Efficiency measures,
    • Information and Communication Technologies (ICT),
    • Ambient measures,
    • Social interactions
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    • Monitoring and evaluation infrastructure,
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    • Equipment
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant
    C1P001: Social acceptance (top-down)4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
    C1P002: Economic growth need2 - Slightly important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Territorial and market attractiveness3 - Moderately important2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P002: Energy autonomy/independence4 - Important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P005: Non-effective regulations4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers?Urban area very high buildings (and apartment) density and thus, less available space for renewable sources.3 - Moderately important2 - Slightly important
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Deficient planning1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P008: Rebound effect3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P010: Economic crisis3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P011: Energy price distortion3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation
    • None
    • None
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • None
    C1P012: Business process management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Urban Services providers
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    • Planning/leading
    • None
    C1P012: Real Estate developers
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • None
    • Design/demand aggregation
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • None
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading
    • None
    • Monitoring/operation/management
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)