Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleTartu, City centre area
Barcelona, SEILAB & Energy SmartLab
Schönbühel-Aggsbach, Schönbühel an der Donau
Freiburg, Waldsee
Uden, Loopkantstraat
Lund, Brunnshög district
Kifissia, Energy community
Groningen, PED North
Tampere, Ilokkaanpuisto district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, SEILAB & Energy SmartLabSchönbühel-Aggsbach, Schönbühel an der DonauFreiburg, WaldseeUden, LoopkantstraatLund, Brunnshög districtKifissia, Energy communityGroningen, PED NorthTampere, Ilokkaanpuisto district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesnonono
PED relevant case studyyesnoyesnoyesnoyesnoyes
PED Lab.yesyesnononononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesnoyesyes
Annual energy surplusnonononoyesyesnoyesno
Energy communitynoyesyesyesnoyesyesyesyes
Circularityyesnonononoyesnoyesno
Air quality and urban comfortnononononoyesyesnono
Electrificationyesyesnoyesyesyesyesnoyes
Net-zero energy costnonoyesnononononono
Net-zero emissionyesyesnoyesnoyesnoyesyes
Self-sufficiency (energy autonomous)noyesnonononononoyes
Maximise self-sufficiencyyesnoyesnononononono
Othernoyesnononoyesnonono
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationImplementation PhasePlanning PhaseIn operationIn operationPlanning PhaseImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date02/1601/201111/2106/17201512/1804/14
A1P007: End Date
A1P007: End date07/2202/201311/2405/23204012/2310/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
      • TNO, Hanze, RUG,
      • Ped noord book
      • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):26.7227372.115.39697.8858571358429175.619113.23246940076959923.8145886.53512123.798083
      Y Coordinate (latitude):58.38071341.348.275247.98653520708004551.660655.7198979220719338.07734953.23484661.464088
      A1P012: Country
      A1P012: CountryEstoniaSpainAustriaGermanyNetherlandsSwedenGreeceNetherlandsFinland
      A1P013: City
      A1P013: CityTartuBarcelona and TarragonaSchönbühel an der DonauFreiburg im BreisgauUdenLundMunicipality of KifissiaGroningenTampere
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfbCfbCfbDfbCsaCfaDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalVirtualGeographicVirtualGeographicGeographicVirtualFunctionalVirtual
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivateMixedPrivatePublicMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED18002941120076
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]35217477284070236015000001.019.000
      A1P020: Total ground area
      A1P020: Total ground area [m²]793144245049200003860150000017.13225.000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000011000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnoyesnoyesyesnoyesyes
      A1P022a: Add the value in EUR if available [EUR]6500000780444099999999
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononononoyesyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingyesnonononoyesnonono
      A1P022d: Add the value in EUR if available [EUR]40000001000000
      A1P022e: Financing - PUBLIC - National fundingyesnoyesnonoyesnoyesyes
      A1P022e: Add the value in EUR if available [EUR]800000030000000
      A1P022f: Financing - PUBLIC - Regional fundingnonoyesnonoyesnonono
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnoyesnoyesno
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnoyesnoyesyes
      A1P022i: Add the value in EUR if available [EUR]2000000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
      Contact person for general enquiries
      A1P026: NameJaanus TammDr. Jaume Salom, Dra. Cristina CorcheroGhazal EtminanDr. Annette SteingrubeTonje Healey TrulsrudMarkus PaulssonArtemis Giavasoglou, Kleopatra KalampokaJasper Tonen, Elisabeth KoopsSenior Scientist Terttu Vainio
      A1P027: OrganizationTartu City GovernmentIRECGhazal.Etminan@ait.ac.atFraunhofer Institute for solar energy systemsNorwegian University of Science and Technology (NTNU)City of LundMunicipality of Kifissia – SPARCS local teamMunicipality of GroningenVTT Technical Research Centre of Finland
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / University
      A1P028: Other
      A1P029: EmailJaanus.tamm@tartu.eeJsalom@irec.catGhazal.Etminan@ait.ac.atAnnette.Steingrube@ise.fraunhofer.detonje.h.trulsrud@ntnu.nomarkus.paulsson@lund.segiavasoglou@kifissia.grJasper.tonen@groningen.nlterttu.vainio@vtt.fi
      Contact person for other special topics
      A1P030: NameKaspar AlevEva DalmanStavros Zapantis - vice mayor
      A1P031: EmailKaspar.alev@tartu.eeeva.dalman@lund.sestavros.zapantis@gmail.com
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy modelingEnergy system modelingEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesYesNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoYesNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoYesNoYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralitynot includedToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Mobility, till now, is not included in the energy model.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.066135.7150.148252.30
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.01231.760.109300.330.7
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesnoyesyesyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.7
      A2P011: Windnononononoyesnonono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononoyesnonoyesyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonononononoyesno
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnononononononoyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPnononononoyesnoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononoyesno
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials known*Annual energy use below is presentedin primary energy consumptionGeothermal heatpump systems, Waste heat from data centersPV plant of energy community locates outside of the city, not on the slot
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.079132.50.1940.7
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.00110.0368
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnonononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonoyesnonoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonoyesnonoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononoyesnonoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonoyesnonoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonoyesnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]9804-0.000430
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community
      A2P022: Education
      A2P022: MobilityyesSustainable mobilityMaximum 1/3 transport with car
      A2P022: EnergyyesNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionLocal energy production 150% of energy need
      A2P022: Water
      A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
      A2P022: Housing and CommunitySpecify the associated KPIsyesdemographic composition, diverse community, social cohesion50% rental apartments and 50% owner apartments
      A2P022: Waste
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesnoyesyes
      A2P023: Solar thermal collectorsnononoyesnoyesnoyesno
      A2P023: Wind Turbinesnononononoyesnonono
      A2P023: Geothermal energy systemnononoyesyesyesnoyesyes
      A2P023: Waste heat recoverynononoyesnoyesnoyesyes
      A2P023: Waste to energynononoyesnononoyesno
      A2P023: Polygenerationnononononoyesnonono
      A2P023: Co-generationnononoyesnonononono
      A2P023: Heat Pumpnonoyesyesyesyesnoyesyes
      A2P023: Hydrogennononoyesnoyesnonono
      A2P023: Hydropower plantnononoyesnonononono
      A2P023: Biomassyesnonoyesnonononono
      A2P023: Biogasyesnonoyesnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnoyesnoyesyes
      A2P024: Energy management systemyesyesyesyesyesyesnoyesyes
      A2P024: Demand-side managementnononoyesyesyesnoyesyes
      A2P024: Smart electricity gridnoyesnoyesnoyesnonono
      A2P024: Thermal Storagenononoyesnoyesnoyesno
      A2P024: Electric Storagenoyesnoyesnoyesnoyesno
      A2P024: District Heating and Coolingyesnonoyesnoyesnoyesno
      A2P024: Smart metering and demand-responsive control systemsnononoyesyesyesnoyesyes
      A2P024: P2P – buildingsnonoyesyesnonononono
      A2P024: OtherElectric grid as virtual battery
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnoyesyesnonononono
      A2P025: Energy efficiency measures in historic buildingsnonoyesyesnononoyesno
      A2P025: High-performance new buildingsnonononoyesyesnoyesyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononoyesnoyesno
      A2P025: Urban data platformsyesnonoyesnoyesnoyesno
      A2P025: Mobile applications for citizensyesnononononononoyes
      A2P025: Building services (HVAC & Lighting)noyesnonoyesyesnonoyes
      A2P025: Smart irrigationnonononononononono
      A2P025: Digital tracking for waste disposalnononononoyesnonono
      A2P025: Smart surveillanceyesnononononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesyesnoyesnonononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnoyesnonono
      A2P026: e-Mobilityyesnonoyesnoyesnoyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnonono
      A2P026: Car-free areanononononoyesnonono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingMiljöbyggnad silver/guldEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • New development strategies
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035City strategy: Net climate neutrality 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      A3P003: OtherNo gas grid in Brunnshög
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Demand management Living Lab
      • Local trading,
      • Existing incentives
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • PPP models,
      • Other
      • Innovative business models,
      • Blockchain
      • Open data business models,
      • Circular economy models
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaRurbanSuburban areaSuburban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • Renovation
      • New construction
      • New construction
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area,
      • Preservation Area
      • Retrofitting Area
      • New Development
      • New Development
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500589800
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential589818000300
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential2000
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.001198780487804900.0266666666666670012
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnoyesyesnonononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenonoyesyesnoyesnonono
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynononoyesnonononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialyesnonoyesnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesnonononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnonoyesnoyesnonoyes
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalyesnonoyesnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononoyesnonono
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesyesyesyesnonoyes
      B1P014 - Residential: Specify the sqm [m²]2394600000
      B1P014: Officenonoyesyesnoyesnonono
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynononoyesnonononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnonoyesnonononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononoyesnoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasyesnonoyesnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnonoyesnoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      • Equipment
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      • Energy modelling
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important
      C1P001: Storage systems and E-mobility market penetration2 - Slightly important5 - Very important4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important2 - Slightly important
      C1P001: Social acceptance (top-down)4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important4 - Important2 - Slightly important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important
      C1P002: Economic growth need2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
      C1P002: Energy autonomy/independence4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important2 - Slightly important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers?
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P007: Deficient planning1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P007: Lack/cost of computational scalability3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important5 - Very important
      C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P008: Rebound effect3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P010: Economic crisis3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important
      C1P010: Risk and uncertainty4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P011: Energy price distortion3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • None
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • None
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      • None
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Construction/implementation
      C1P012: Urban Services providers
      • Construction/implementation
      • Planning/leading
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • None
      • Planning/leading
      • None
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • None
      • None
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • None
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)