Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Barcelona, SEILAB & Energy SmartLab
Ankara, Çamlık District
City of Espoo, Espoonlahti district, Lippulaiva block
Vienna, Am Kempelenpark
Halmstad, Fyllinge
Istanbul, Ozyegin University Campus
Riga, Ķīpsala, RTU smart student city
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, SEILAB & Energy SmartLabAnkara, Çamlık DistrictCity of Espoo, Espoonlahti district, Lippulaiva blockVienna, Am KempelenparkHalmstad, FyllingeIstanbul, Ozyegin University CampusRiga, Ķīpsala, RTU smart student city
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesnonoyes
PED relevant case studyyesnoyesnonoyesyesno
PED Lab.yesyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesnoyesnoyesyes
Annual energy surplusnonoyesnoyesnonono
Energy communitynoyesyesnonoyesnoyes
Circularityyesnonononononono
Air quality and urban comfortnonononononoyesno
Electrificationyesyesyesnononoyesno
Net-zero energy costnonoyesnonononono
Net-zero emissionyesyesyesnonononono
Self-sufficiency (energy autonomous)noyesnononononoyes
Maximise self-sufficiencyyesnoyesyesnononoyes
Othernoyesnonononoyesno
Other (A1P004)Green ITalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationPlanning PhaseIn operationPlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1601/201110/2206/1807/1601/2110/2401/24
A1P007: End Date
A1P007: End date07/2202/201309/2503/2202/2501/3010/2812/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • General statistical datasets
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
      A1P011: Geographic coordinates
      X Coordinate (longitude):26.7227372.132.79536924.654316.39529212.9205429.25830024.08168339
      Y Coordinate (latitude):58.38071341.339.88181260.149148.17359856.6519441.03060056.95245956
      A1P012: Country
      A1P012: CountryEstoniaSpainTurkeyFinlandAustriaSwedenTurkeyLatvia
      A1P013: City
      A1P013: CityTartuBarcelona and TarragonaAnkaraEspooViennaHalmstadIstanbulRiga
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDsbDfbCwbDwbCfaCfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalVirtualGeographicGeographicGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivatePrivatePrivateMixedPrivatePublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED180257962501515
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]3521722600112000170000
      A1P020: Total ground area
      A1P020: Total ground area [m²]79314450800165000285.400119264
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00010001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnonoyesnoyesyesno
      A1P022a: Add the value in EUR if available [EUR]6500000
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingyesnonononononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesnonononononono
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononononononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesyesyes
      A1P022i: Add the value in EUR if available [EUR]3088757500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsIn addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]251
      Contact person for general enquiries
      A1P026: NameJaanus TammDr. Jaume Salom, Dra. Cristina CorcheroProf. Dr. İpek Gürsel DİNOElina EkelundGerhard HoferMarkus OlofsgårdCem KeskinJudith Stiekema
      A1P027: OrganizationTartu City GovernmentIRECMiddle East Technical UniversityCitycon Oyje7 energy innovation & engineeringAFRYCenter for Energy, Environment and Economy, Ozyegin UniversityOASC
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustrySME / IndustryOtherResearch Center / UniversityOther
      A1P028: Othernot for profit private organisation
      A1P029: EmailJaanus.tamm@tartu.eeJsalom@irec.catipekg@metu.edu.trElina.ekelund@citycon.comgerhard.hofer@e-sieben.atmarkus.olofsgard@afry.comcem.keskin@ozyegin.edu.trjudith@oascities.org
      Contact person for other special topics
      A1P030: NameKaspar AlevAssoc. Prof. Onur TaylanElina EkelundM. Pınar Mengüç
      A1P031: EmailKaspar.alev@tartu.eeotaylan@metu.edu.trElina.ekelund@citycon.compinar.menguc@ozyegin.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electriclink based regulation of electricity gridLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesYesNoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoYesNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility is not included in the calculations.Mobility is not included in the energy model.Not included, the campus is a non car area except emergenciesThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.13.4465.58000
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.5285.85000
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesnoyesyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]3.42400.54
      A2P011: Windnononononononoyes
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononoyes
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononoyesnoyesnono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
      A2P012: Solar Thermalyesnonononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnononononononoyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]3.97611.33.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]5.76
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesyesnonononoyes
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
      A2P018: Windnononononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononoyesnononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0001.05323193916350000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]9800
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Health
      A2P022: Education
      A2P022: Mobility
      A2P022: EnergyOn-site energy ratio
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesnoyesyesno
      A2P023: Solar thermal collectorsnononononononono
      A2P023: Wind Turbinesnonononononoyesno
      A2P023: Geothermal energy systemnononoyesnononono
      A2P023: Waste heat recoverynononoyesnononono
      A2P023: Waste to energynononononononono
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnonononononoyesno
      A2P023: Heat Pumpnonoyesnononoyesno
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassyesnonononononono
      A2P023: Biogasyesnonononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnoyesyesyes
      A2P024: Energy management systemyesyesnoyesnonoyesyes
      A2P024: Demand-side managementnononononoyesyesyes
      A2P024: Smart electricity gridnoyesnoyesnoyesnoyes
      A2P024: Thermal Storagenononoyesnononoyes
      A2P024: Electric Storagenoyesnoyesnonoyesyes
      A2P024: District Heating and Coolingyesnononononoyesyes
      A2P024: Smart metering and demand-responsive control systemsnononononoyesyesyes
      A2P024: P2P – buildingsnononononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnoyesnonononono
      A2P025: Energy efficiency measures in historic buildingsnononononononono
      A2P025: High-performance new buildingsnononoyesnonoyesno
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnononono
      A2P025: Urban data platformsyesnonononononoyes
      A2P025: Mobile applications for citizensyesnonononononoyes
      A2P025: Building services (HVAC & Lighting)noyesyesyesnonoyesyes
      A2P025: Smart irrigationnonononononoyesno
      A2P025: Digital tracking for waste disposalnononononononono
      A2P025: Smart surveillanceyesnononononoyesno
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesyesnononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnononono
      A2P026: e-Mobilityyesnonoyesnonoyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononoyesno
      A2P026: Car-free areanonononononoyesno
      A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoYesNoYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoYesNo
      A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)LEED BD+C, LEED NC CAMPUS
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • New development strategies
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Carbon and Energy Neutrality
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Demand management Living Lab
      • Innovative business models
      • Local trading
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Co-creation / Citizen engagement strategies
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Building / district Certification
      • Strategic urban planning
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone
      • Other
      • Energy Neutral,
      • Carbon-free
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Greening strategies,
      • Cool Materials
      • Energy Neutral
      A3P009: OtherEnergy Positive, Low Emission ZoneCarbon free in terms of energy
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionÇamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPED-ACT project.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban areaSuburban areaSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • New construction
      • Renovation
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • Re-use / Transformation Area,
      • New Development
      • New Development
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction198620222024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential9800
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential9800
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000340
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000034.3377715487040
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnoyesnonononono
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenonononoyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialyesnonoyesyesnonono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononoyesno
      B1P013 - Institutional: Specify the sqm [m²]285.400
      B1P013: Natural areasyesnonoyesnoyesnono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalyesnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesyesyesnonono
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenonononoyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnonoyesyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononoyesno
      B1P014 - Institutional: Specify the sqm [m²]280000
      B1P014: Natural areasyesnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnonononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationIREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P001: Storage systems and E-mobility market penetration2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
      C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P001: Social acceptance (top-down)4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P002: Energy autonomy/independence4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P005: Non-effective regulations4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P007: Deficient planning1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P007: Lack/cost of computational scalability3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P008: Rebound effect3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P010: Economic crisis3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P010: Risk and uncertainty4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Energy price distortion3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Construction/implementation
      • None
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)