Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Uncompare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Uncompare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Tartu, City centre area | Barcelona, SEILAB & Energy SmartLab | Freiburg, Waldsee | Lund, Brunnshög district | Ankara, Çamlık District | Izmir, District of Karşıyaka |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Tartu, City centre area | Barcelona, SEILAB & Energy SmartLab | Freiburg, Waldsee | Lund, Brunnshög district | Ankara, Çamlık District | Izmir, District of Karşıyaka |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| |||
A1P003: Categorisation of the PED site | ||||||
PED case study | no | no | yes | yes | yes | yes |
PED relevant case study | yes | no | no | no | yes | no |
PED Lab. | yes | yes | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality | yes | no | yes | yes | yes | yes |
Annual energy surplus | no | no | no | yes | yes | yes |
Energy community | no | yes | yes | yes | yes | no |
Circularity | yes | no | no | yes | no | no |
Air quality and urban comfort | no | no | no | yes | no | yes |
Electrification | yes | yes | yes | yes | yes | no |
Net-zero energy cost | no | no | no | no | yes | yes |
Net-zero emission | yes | yes | yes | yes | yes | no |
Self-sufficiency (energy autonomous) | no | yes | no | no | no | no |
Maximise self-sufficiency | yes | no | no | no | yes | yes |
Other | no | yes | no | yes | no | no |
Other (A1P004) | Green IT | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | ||||
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | Planning Phase | In operation | Planning Phase | Planning Phase |
A1P006: Start Date | ||||||
A1P006: Start date | 02/16 | 01/2011 | 11/21 | 2015 | 10/22 | 10/22 |
A1P007: End Date | ||||||
A1P007: End date | 07/22 | 02/2013 | 11/24 | 2040 | 09/25 | 10/25 |
A1P008: Reference Project | ||||||
A1P008: Reference Project | ||||||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
|
|
|
| |
A1P009: Other | GIS open dataset is under construction | Other | ||||
A1P010: Sources | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
| |||||
A1P011: Geographic coordinates | ||||||
X Coordinate (longitude): | 26.722737 | 2.1 | 7.885857135842917 | 13.232469400769599 | 32.795369 | 27.110049 |
Y Coordinate (latitude): | 58.380713 | 41.3 | 47.986535207080045 | 55.71989792207193 | 39.881812 | 38.496054 |
A1P012: Country | ||||||
A1P012: Country | Estonia | Spain | Germany | Sweden | Turkey | Turkey |
A1P013: City | ||||||
A1P013: City | Tartu | Barcelona and Tarragona | Freiburg im Breisgau | Lund | Ankara | İzmir |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Csa | Cfb | Dfb | Dsb | Csa |
A1P015: District boundary | ||||||
A1P015: District boundary | Functional | Virtual | Virtual | Geographic | Geographic | Geographic |
Other | ||||||
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: | Private | Public | Mixed | Public | Private | Private |
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners |
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 18 | 0 | 2941 | 200 | 257 | 21 |
A1P019: Conditioned space | ||||||
A1P019: Conditioned space [m²] | 35217 | 284070 | 1500000 | 22600 | 102795 | |
A1P020: Total ground area | ||||||
A1P020: Total ground area [m²] | 793144 | 4920000 | 1500000 | 50800 | 32600 | |
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 1 | 0 | 3 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | yes | no | no | yes | no | no |
A1P022a: Add the value in EUR if available [EUR] | 6500000 | 99999999 | ||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||
A1P022d: Financing - PUBLIC - EU structural funding | yes | no | no | yes | no | no |
A1P022d: Add the value in EUR if available [EUR] | 4000000 | 1000000 | ||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | yes | no | no |
A1P022e: Add the value in EUR if available [EUR] | 8000000 | 30000000 | ||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | yes | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | |||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | yes | yes | no | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | |||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | yes | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | 1193355 | ||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | yes | no | yes | yes |
A1P022j: Add the value in EUR if available [EUR] | ||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||
A1P022: Other | ||||||
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
|
| |
A1P023: Other | World class sustainable living and research environments | |||||
A1P024: More comments: | ||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | ||||
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 25 | |||||
Contact person for general enquiries | ||||||
A1P026: Name | Jaanus Tamm | Dr. Jaume Salom, Dra. Cristina Corchero | Dr. Annette Steingrube | Markus Paulsson | Prof. Dr. İpek Gürsel DİNO | Ozlem Senyol |
A1P027: Organization | Tartu City Government | IREC | Fraunhofer Institute for solar energy systems | City of Lund | Middle East Technical University | Karsiyaka Municipality |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Research Center / University | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies |
A1P028: Other | ||||||
A1P029: Email | Jaanus.tamm@tartu.ee | Jsalom@irec.cat | Annette.Steingrube@ise.fraunhofer.de | markus.paulsson@lund.se | ipekg@metu.edu.tr | ozlemkocaer2@gmail.com |
Contact person for other special topics | ||||||
A1P030: Name | Kaspar Alev | Eva Dalman | Assoc. Prof. Onur Taylan | Hasan Burak Cavka | ||
A1P031: Email | Kaspar.alev@tartu.ee | eva.dalman@lund.se | otaylan@metu.edu.tr | hasancavka@iyte.edu.tr | ||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | ||||||
A2P001: Fields of application |
|
|
|
|
|
|
A2P001: Other | Walkability and biking | |||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP) | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy system modeling | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED. |
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | Yes | No | Yes | Yes | |
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | Yes | Yes | Yes |
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | Yes | Yes | No | No |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Mobility is not included in the calculations. | Mobility is not included in the calculations. | |
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 9.1 | 135.715 | 25 | 3.446 | 3.862 | |
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 31.76 | 30 | 0.528 | 1.226 | ||
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | ||||||
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | yes | yes | no | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 3.4240 | 1.028 | ||||
A2P011: Wind | no | no | no | yes | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Hydro | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_el | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: PVT_el | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Other | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Solar Thermal | yes | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.5 | |||||
A2P012: Biomass_heat | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Waste heat+HP | no | no | no | yes | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | |||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: PVT_th | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | 53 MW PV potential in all three quarters; no other internal renewable energy potentials known | |||||
A2P014: Annual energy use | ||||||
A2P014: Annual energy use [GWh/annum] | 132.5 | 3.976 | 5.088 | |||
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered [GWh/annum] | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | |||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | yes | no | no | yes | yes |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Coal | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Oil | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Other | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | no | no | yes | no | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | 0.707 | |||||
A2P018: Wind | no | no | no | yes | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Hydro | no | no | no | yes | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_el | no | no | no | yes | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: PVT_el | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Other | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Solar Thermal | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_heat | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Waste heat+HP | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: PVT_th | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Other | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 1.4540311173975 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 980 | |||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | ||||||
A2P022: Health | ||||||
A2P022: Education | ||||||
A2P022: Mobility | yes | Maximum 1/3 transport with car | ||||
A2P022: Energy | yes | Local energy production 150% of energy need | ||||
A2P022: Water | ||||||
A2P022: Economic development | ||||||
A2P022: Housing and Community | yes | 50% rental apartments and 50% owner apartments | ||||
A2P022: Waste | ||||||
A2P022: Other | ||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | yes | yes | no | no |
A2P023: Wind Turbines | no | no | no | yes | no | no |
A2P023: Geothermal energy system | no | no | yes | yes | no | no |
A2P023: Waste heat recovery | no | no | yes | yes | no | no |
A2P023: Waste to energy | no | no | yes | no | no | no |
A2P023: Polygeneration | no | no | no | yes | no | no |
A2P023: Co-generation | no | no | yes | no | no | no |
A2P023: Heat Pump | no | no | yes | yes | yes | yes |
A2P023: Hydrogen | no | no | yes | yes | no | no |
A2P023: Hydropower plant | no | no | yes | no | no | no |
A2P023: Biomass | yes | no | yes | no | no | no |
A2P023: Biogas | yes | no | yes | no | no | no |
A2P023: Other | ||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | yes | yes | no | no |
A2P024: Energy management system | yes | yes | yes | yes | no | no |
A2P024: Demand-side management | no | no | yes | yes | no | no |
A2P024: Smart electricity grid | no | yes | yes | yes | no | no |
A2P024: Thermal Storage | no | no | yes | yes | no | no |
A2P024: Electric Storage | no | yes | yes | yes | no | no |
A2P024: District Heating and Cooling | yes | no | yes | yes | no | no |
A2P024: Smart metering and demand-responsive control systems | no | no | yes | yes | no | no |
A2P024: P2P – buildings | no | no | yes | no | no | no |
A2P024: Other | ||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | yes | no | yes | no | yes | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | yes | no | no | no |
A2P025: High-performance new buildings | no | no | no | yes | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | yes | no | no |
A2P025: Urban data platforms | yes | no | yes | yes | no | no |
A2P025: Mobile applications for citizens | yes | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | no | yes | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | yes | no | no |
A2P025: Smart surveillance | yes | no | no | no | no | no |
A2P025: Other | ||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | yes | yes | no | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | no | yes | yes | no | no |
A2P026: e-Mobility | yes | no | yes | yes | no | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | yes | yes | no | no |
A2P026: Car-free area | no | no | no | yes | no | no |
A2P026: Other | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | Walkability | |||||
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | Yes | No | Yes | No | No | |
A2P028: If yes, please specify and/or enter notes | Miljöbyggnad silver/guld | |||||
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | No | No | No | ||
A2P029: If yes, please specify and/or enter notes | ||||||
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | Climate neutrality by 2035 | City strategy: Net climate neutrality 2030 | Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023. | |||
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
| ||
A3P003: Other | No gas grid in Brunnshög | |||||
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario. | |
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | |||
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
|
|
|
| ||
A3P006: Other | Attractivenes | |||||
A3P007: Social models | ||||||
A3P007: Social models |
|
|
|
|
|
|
A3P007: Other | ||||||
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
|
|
|
| |
A3P008: Other | ||||||
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
|
| |
A3P009: Other | Energy Positive, Low Emission Zone | |||||
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | ||||
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED). | ||
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | PED-ACT project. | |||
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Urban area | Suburban area | Urban area | |
B1P004: Type of district | ||||||
B2P004: Type of district |
|
|
|
|
| |
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
|
|
| |
B1P006: Year of construction | ||||||
B1P006: Year of construction | 1986 | 2005 | ||||
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | 4500 | 5898 | 0 | |||
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | 5898 | 18000 | ||||
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | 2000 | |||||
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | 22000 | |||||
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0 | 0 | 0.0011987804878049 | 0.026666666666667 | 0 | 0 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | yes | no | yes | no | yes | yes |
B1P013 - Residential: Specify the sqm [m²] | 50800 | 102795 | ||||
B1P013: Office | no | no | yes | yes | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | |||||
B1P013: Industry and Utility | no | no | yes | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P013: Commercial | yes | no | yes | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||
B1P013: Institutional | no | no | yes | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||
B1P013: Natural areas | yes | no | yes | yes | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | |||||
B1P013: Recreational | yes | no | yes | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||
B1P013: Dismissed areas | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P013: Other | no | no | no | yes | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | |||||
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | yes | no | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 600000 | 50800 | 102795 | |||
B1P014: Office | no | no | yes | yes | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | |||||
B1P014: Industry and Utility | no | no | yes | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P014: Commercial | yes | no | yes | no | no | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||
B1P014: Institutional | no | no | yes | yes | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | |||||
B1P014: Natural areas | yes | no | yes | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||
B1P014: Recreational | yes | no | yes | yes | no | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | |||||
B1P014: Dismissed areas | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P014: Other | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||
B2P002: Installation life time | ||||||
B2P002: Installation life time | ||||||
B2P003: Scale of action | ||||||
B2P003: Scale | District | Virtual | ||||
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | IREC | |||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | ||||
B2P006: Other | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||
B2P007: Other | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | ||||
B2P008: Other | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||
B2P009: Other | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||
B2P011: Other | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures |
|
| ||||
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators |
|
| ||||
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | ||||||
B2P017: Capacities | ||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | |||||
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | ||||||
B2P019: Available tools | ||||||
B2P019: Available tools |
|
| ||||
B2P019: Available tools | ||||||
B2P020: External accessibility | ||||||
B2P020: External accessibility | ||||||
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P001: Storage systems and E-mobility market penetration | 2 - Slightly important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 5 - Very important | 5 - Very important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important |
C1P001: Social acceptance (top-down) | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 5 - Very important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 5 - Very important |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Energy autonomy/independence | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | ||||||
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important |
C1P003: Lack of public participation | 1 - Unimportant | 2 - Slightly important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P003: Fragmented and or complex ownership structure | 5 - Very important | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | ||||||
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 5 - Very important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 5 - Very important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | ||||||
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important |
C1P005: Unfavorable local regulations for innovative technologies | 2 - Slightly important | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P005: Building code and land-use planning hindering innovative technologies | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 3 - Moderately important |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | ? | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1 | |||
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P007: Deficient planning | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important |
C1P007: Retrofitting work in dwellings in occupied state | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 5 - Very important |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P007: Grid congestion, grid instability | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Difficult definition of system boundaries | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 4 - Important | 4 - Important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | ||||||
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 4 - Important | 5 - Very important |
C1P008: Difficulty of finding and engaging relevant actors | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important |
C1P008: Lack of trust beyond social network | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P008: Rebound effect | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important |
C1P008: Hostile or passive attitude towards environmentalism | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | ||||||
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | 5 - Very important | 4 - Important |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 4 - Important |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 5 - Very important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P010: Economic crisis | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P010: Risk and uncertainty | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | ||||||
C1P011: Market barriers | ||||||
C1P011: Split incentives | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P011: Energy price distortion | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | ||||||
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
| |||
C1P012: Research & Innovation |
|
|
| |||
C1P012: Financial/Funding |
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
| |||
C1P012: Business process management |
|
|
| |||
C1P012: Urban Services providers |
|
|
| |||
C1P012: Real Estate developers |
|
|
| |||
C1P012: Design/Construction companies |
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
| |||
C1P012: Other | ||||||
C1P012: Other (if any) | ||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)