Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Uncompare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Uncompare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Uncompare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Tartu, City centre area | Barcelona, SEILAB & Energy SmartLab | City of Espoo, Espoonlahti district, Lippulaiva block | Ankara, Çamlık District | Vienna, Am Kempelenpark | Bologna, Pilastro-Roveri district | Freiburg, Waldsee |
---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||
A1P001: Name of the PED case study / PED Lab | Tartu, City centre area | Barcelona, SEILAB & Energy SmartLab | City of Espoo, Espoonlahti district, Lippulaiva block | Ankara, Çamlık District | Vienna, Am Kempelenpark | Bologna, Pilastro-Roveri district | Freiburg, Waldsee |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| ||||
A1P003: Categorisation of the PED site | |||||||
PED case study | no | no | yes | yes | yes | no | yes |
PED relevant case study | yes | no | no | yes | no | yes | no |
PED Lab. | yes | yes | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | |||||||
Climate neutrality | yes | no | no | yes | yes | yes | yes |
Annual energy surplus | no | no | no | yes | yes | no | no |
Energy community | no | yes | no | yes | no | yes | yes |
Circularity | yes | no | no | no | no | no | no |
Air quality and urban comfort | no | no | no | no | no | no | no |
Electrification | yes | yes | no | yes | no | no | yes |
Net-zero energy cost | no | no | no | yes | no | no | no |
Net-zero emission | yes | yes | no | yes | no | no | yes |
Self-sufficiency (energy autonomous) | no | yes | no | no | no | no | no |
Maximise self-sufficiency | yes | no | yes | yes | no | no | no |
Other | no | yes | no | no | no | no | no |
Other (A1P004) | Green IT | ||||||
A1P005: Phase of the PED case study / PED Lab | |||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | In operation | Planning Phase | Planning Phase | Planning Phase | Planning Phase |
A1P006: Start Date | |||||||
A1P006: Start date | 02/16 | 01/2011 | 06/18 | 10/22 | 07/16 | 09/19 | 11/21 |
A1P007: End Date | |||||||
A1P007: End date | 07/22 | 02/2013 | 03/22 | 09/25 | 02/25 | 10/23 | 11/24 |
A1P008: Reference Project | |||||||
A1P008: Reference Project | |||||||
A1P009: Data availability | |||||||
A1P009: Data availability |
|
|
|
|
|
| |
A1P009: Other | |||||||
A1P010: Sources | |||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| ||||
A1P011: Geographic coordinates | |||||||
X Coordinate (longitude): | 26.722737 | 2.1 | 24.6543 | 32.795369 | 16.395292 | 11.397323 | 7.885857135842917 |
Y Coordinate (latitude): | 58.380713 | 41.3 | 60.1491 | 39.881812 | 48.173598 | 44.507106 | 47.986535207080045 |
A1P012: Country | |||||||
A1P012: Country | Estonia | Spain | Finland | Turkey | Austria | Italy | Germany |
A1P013: City | |||||||
A1P013: City | Tartu | Barcelona and Tarragona | Espoo | Ankara | Vienna | Bologna | Freiburg im Breisgau |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Csa | Dfb | Dsb | Cwb | Cfa | Cfb |
A1P015: District boundary | |||||||
A1P015: District boundary | Functional | Virtual | Geographic | Geographic | Geographic | Geographic | Virtual |
Other | |||||||
A1P016: Ownership of the case study/PED Lab | |||||||
A1P016: Ownership of the case study/PED Lab: | Private | Public | Private | Private | Private | Mixed | Mixed |
A1P017: Ownership of the land / physical infrastructure | |||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Single Owner | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners |
A1P018: Number of buildings in PED | |||||||
A1P018: Number of buildings in PED | 18 | 0 | 9 | 257 | 6 | 1962 | 2941 |
A1P019: Conditioned space | |||||||
A1P019: Conditioned space [m²] | 35217 | 112000 | 22600 | 284070 | |||
A1P020: Total ground area | |||||||
A1P020: Total ground area [m²] | 793144 | 165000 | 50800 | 7800000 | 4920000 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | |||||||
A1P022a: Financing - PRIVATE - Real estate | yes | no | yes | no | no | no | no |
A1P022a: Add the value in EUR if available [EUR] | 6500000 | ||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||
A1P022d: Financing - PUBLIC - EU structural funding | yes | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 4000000 | ||||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | no | no | yes | no |
A1P022e: Add the value in EUR if available [EUR] | 8000000 | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | yes | no |
A1P022f: Add the value in EUR if available [EUR] | |||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | no | yes | yes |
A1P022g: Add the value in EUR if available [EUR] | |||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | yes | no | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 308875 | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | yes | no | no | yes |
A1P022j: Add the value in EUR if available [EUR] | |||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | yes | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||
A1P022: Other | |||||||
A1P023: Economic Targets | |||||||
A1P023: Economic Targets |
|
|
|
|
| ||
A1P023: Other | |||||||
A1P024: More comments: | |||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190] | |||
A1P025: Estimated PED case study / PED LAB costs | |||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 25 | ||||||
Contact person for general enquiries | |||||||
A1P026: Name | Jaanus Tamm | Dr. Jaume Salom, Dra. Cristina Corchero | Elina Ekelund | Prof. Dr. İpek Gürsel DİNO | Gerhard Hofer | Prof. Danila Longo | Dr. Annette Steingrube |
A1P027: Organization | Tartu City Government | IREC | Citycon Oyj | Middle East Technical University | e7 energy innovation & engineering | University of Bologna - Architecture Department | Fraunhofer Institute for solar energy systems |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | SME / Industry | Research Center / University | SME / Industry | Research Center / University | Research Center / University |
A1P028: Other | |||||||
A1P029: Email | Jaanus.tamm@tartu.ee | Jsalom@irec.cat | Elina.ekelund@citycon.com | ipekg@metu.edu.tr | gerhard.hofer@e-sieben.at | Annette.Steingrube@ise.fraunhofer.de | |
Contact person for other special topics | |||||||
A1P030: Name | Kaspar Alev | Elina Ekelund | Assoc. Prof. Onur Taylan | ||||
A1P031: Email | Kaspar.alev@tartu.ee | Elina.ekelund@citycon.com | otaylan@metu.edu.tr | ||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | |||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
A2P001: Other | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP) | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation | Energy system modeling | |
A2P003: Application of ISO52000 | |||||||
A2P003: Application of ISO52000 | No | Yes | Yes | Yes | Yes | ||
A2P004: Appliances included in the calculation of the energy balance | |||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | Yes | No | Yes | |
A2P005: Mobility included in the calculation of the energy balance | |||||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | No | No | No | No | Yes |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | Mobility is not included in the energy model. | Mobility is not included in the calculations. | All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality | |||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 9.1 | 5.5 | 3.446 | 135.715 | |||
A2P008: Annual energy demand in buildings / Electric Demand | |||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 5.8 | 0.528 | 31.76 | ||||
A2P009: Annual energy demand for e-mobility | |||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | |||||||
A2P010: Annual energy demand for urban infrastructure | |||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||
A2P011: PV | yes | yes | yes | yes | no | yes | no |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.54 | 3.4240 | |||||
A2P011: Wind | no | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Hydro | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_el | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: PVT_el | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Other | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||
A2P012: Geothermal | no | no | yes | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | 5 | ||||||
A2P012: Solar Thermal | yes | no | no | no | no | yes | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.5 | ||||||
A2P012: Biomass_heat | no | no | no | no | no | yes | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Waste heat+HP | no | no | no | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: PVT_th | no | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Other | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P013: Renewable resources on-site - Additional notes | |||||||
A2P013: Renewable resources on-site - Additional notes | 53 MW PV potential in all three quarters; no other internal renewable energy potentials known | ||||||
A2P014: Annual energy use | |||||||
A2P014: Annual energy use [GWh/annum] | 11.3 | 3.976 | 132.5 | ||||
A2P015: Annual energy delivered | |||||||
A2P015: Annual energy delivered [GWh/annum] | 5.76 | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | ||||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||
A2P017: Gas | no | yes | no | yes | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | ||||||
A2P017: Coal | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | ||||||
A2P017: Oil | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | ||||||
A2P017: Other | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||
A2P018: PV | no | no | no | no | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Wind | no | no | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Hydro | no | no | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_el | no | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: PVT_el | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Other | no | no | yes | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 5.26 | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||
A2P019: Geothermal | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: PVT_th | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Other | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 1.0532319391635 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 980 | 0 | |||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||
A2P022: Safety & Security | |||||||
A2P022: Health | |||||||
A2P022: Education | |||||||
A2P022: Mobility | yes | ||||||
A2P022: Energy | On-site energy ratio | yes | |||||
A2P022: Water | |||||||
A2P022: Economic development | |||||||
A2P022: Housing and Community | yes | ||||||
A2P022: Waste | |||||||
A2P022: Other | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||
A2P023: Photovoltaics | yes | yes | yes | yes | no | yes | yes |
A2P023: Solar thermal collectors | no | no | no | no | no | yes | yes |
A2P023: Wind Turbines | no | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | yes | no | no | yes | yes |
A2P023: Waste heat recovery | no | no | yes | no | no | no | yes |
A2P023: Waste to energy | no | no | no | no | no | yes | yes |
A2P023: Polygeneration | no | no | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | no | yes | yes |
A2P023: Heat Pump | no | no | no | yes | no | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no | yes |
A2P023: Hydropower plant | no | no | no | no | no | no | yes |
A2P023: Biomass | yes | no | no | no | no | no | yes |
A2P023: Biogas | yes | no | no | no | no | no | yes |
A2P023: Other | |||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | yes | no | no | yes | yes |
A2P024: Energy management system | yes | yes | yes | no | no | no | yes |
A2P024: Demand-side management | no | no | no | no | no | no | yes |
A2P024: Smart electricity grid | no | yes | yes | no | no | no | yes |
A2P024: Thermal Storage | no | no | yes | no | no | no | yes |
A2P024: Electric Storage | no | yes | yes | no | no | yes | yes |
A2P024: District Heating and Cooling | yes | no | no | no | no | yes | yes |
A2P024: Smart metering and demand-responsive control systems | no | no | no | no | no | no | yes |
A2P024: P2P – buildings | no | no | no | no | no | no | yes |
A2P024: Other | |||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||
A2P025: Deep Retrofitting | yes | no | no | yes | no | yes | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no | yes |
A2P025: High-performance new buildings | no | no | yes | no | no | yes | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | yes | no | no | yes | no |
A2P025: Urban data platforms | yes | no | no | no | no | no | yes |
A2P025: Mobile applications for citizens | yes | no | no | no | no | yes | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | no | yes | no |
A2P025: Smart irrigation | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | yes | no |
A2P025: Smart surveillance | yes | no | no | no | no | yes | no |
A2P025: Other | |||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | yes | no | no | no | yes | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | no | yes | no | no | yes | yes |
A2P026: e-Mobility | yes | no | yes | no | no | yes | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | no | yes | yes |
A2P026: Car-free area | no | no | no | no | no | no | no |
A2P026: Other | Local transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries | ||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P028: Energy efficiency certificates | |||||||
A2P028: Energy efficiency certificates | Yes | Yes | No | Yes | No | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate => Energy efficiency class B (2018 version) | Energy Performance Certificate for each dwelling | |||||
A2P029: Any other building / district certificates | |||||||
A2P029: Any other building / district certificates | Yes | No | No | No | |||
A2P029: If yes, please specify and/or enter notes | LEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD) | ||||||
A3P001: Relevant city /national strategy | |||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | |||||||
A3P002: Quantitative targets included in the city / national strategy | Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels. | City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal; | Climate neutrality by 2035 | ||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
| |||
A3P003: Other | |||||||
A3P004: Identification of needs and priorities | |||||||
A3P004: Identification of needs and priorities | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | - Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district. | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility. | Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level | ||
A3P005: Sustainable behaviour | |||||||
A3P005: Sustainable behaviour | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners. | Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri. | Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy | |||
A3P006: Economic strategies | |||||||
A3P006: Economic strategies |
|
|
|
|
| ||
A3P006: Other | |||||||
A3P007: Social models | |||||||
A3P007: Social models |
|
|
|
|
|
| |
A3P007: Other | |||||||
A3P008: Integrated urban strategies | |||||||
A3P008: Integrated urban strategies |
|
|
|
|
| ||
A3P008: Other | |||||||
A3P009: Environmental strategies | |||||||
A3P009: Environmental strategies |
|
|
|
|
| ||
A3P009: Other | Carbon free in terms of energy | Energy Positive, Low Emission Zone | |||||
A3P010: Legal / Regulatory aspects | |||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | - Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021 | PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’ | ||||
B1P001: PED/PED relevant concept definition | |||||||
B1P001: PED/PED relevant concept definition | Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability. | Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study | |||
B1P002: Motivation behind PED/PED relevant project development | |||||||
B1P002: Motivation behind PED/PED relevant project development | - Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders | PED-ACT project. | Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030. | City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard | |||
B1P003: Environment of the case study area | |||||||
B2P003: Environment of the case study area | Urban area | Urban area | Suburban area | Urban area | Urban area | Suburban area | |
B1P004: Type of district | |||||||
B2P004: Type of district |
|
|
|
|
|
| |
B1P005: Case Study Context | |||||||
B1P005: Case Study Context |
|
|
|
|
|
| |
B1P006: Year of construction | |||||||
B1P006: Year of construction | 2022 | 1986 | |||||
B1P007: District population before intervention - Residential | |||||||
B1P007: District population before intervention - Residential | 4500 | 5898 | |||||
B1P008: District population after intervention - Residential | |||||||
B1P008: District population after intervention - Residential | 5898 | ||||||
B1P009: District population before intervention - Non-residential | |||||||
B1P009: District population before intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | |||||||
B1P011: Population density before intervention | |||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0.0011987804878049 |
B1P013: Building and Land Use before intervention | |||||||
B1P013: Residential | yes | no | no | yes | no | yes | yes |
B1P013 - Residential: Specify the sqm [m²] | 50800 | ||||||
B1P013: Office | no | no | no | no | yes | yes | yes |
B1P013 - Office: Specify the sqm [m²] | |||||||
B1P013: Industry and Utility | no | no | no | no | no | yes | yes |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P013: Commercial | yes | no | yes | no | yes | yes | yes |
B1P013 - Commercial: Specify the sqm [m²] | |||||||
B1P013: Institutional | no | no | no | no | no | yes | yes |
B1P013 - Institutional: Specify the sqm [m²] | |||||||
B1P013: Natural areas | yes | no | yes | no | no | yes | yes |
B1P013 - Natural areas: Specify the sqm [m²] | |||||||
B1P013: Recreational | yes | no | no | no | no | yes | yes |
B1P013 - Recreational: Specify the sqm [m²] | |||||||
B1P013: Dismissed areas | no | no | no | no | no | yes | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P013: Other | no | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | |||||||
B1P014: Building and Land Use after intervention | |||||||
B1P014: Residential | yes | no | yes | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 50800 | ||||||
B1P014: Office | no | no | no | no | yes | yes | yes |
B1P014 - Office: Specify the sqm [m²] | |||||||
B1P014: Industry and Utility | no | no | no | no | no | yes | yes |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P014: Commercial | yes | no | yes | no | yes | yes | yes |
B1P014 - Commercial: Specify the sqm [m²] | |||||||
B1P014: Institutional | no | no | no | no | no | yes | yes |
B1P014 - Institutional: Specify the sqm [m²] | |||||||
B1P014: Natural areas | yes | no | no | no | no | yes | yes |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||
B1P014: Recreational | yes | no | no | no | no | yes | yes |
B1P014 - Recreational: Specify the sqm [m²] | |||||||
B1P014: Dismissed areas | no | no | no | no | no | yes | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P014: Other | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||||
B2P001: PED Lab concept definition | |||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | ||||||
B2P002: Installation life time | |||||||
B2P002: Installation life time | |||||||
B2P003: Scale of action | |||||||
B2P003: Scale | District | Virtual | |||||
B2P004: Operator of the installation | |||||||
B2P004: Operator of the installation | IREC | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P006: Circular Economy Approach | |||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | |||||
B2P006: Other | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Motivation for developing the PED Lab |
|
| |||||
B2P007: Other | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | |||||
B2P008: Other | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Collaborative partners that participate in the PED Lab |
| ||||||
B2P009: Other | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| |||||
B2P011: Other | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P012: Incubation capacities of PED Lab |
|
| |||||
B2P013: Availability of the facilities for external people | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P014: Monitoring measures | |||||||
B2P014: Monitoring measures |
|
| |||||
B2P015: Key Performance indicators | |||||||
B2P015: Key Performance indicators |
|
| |||||
B2P016: Execution of operations | |||||||
B2P016: Execution of operations | |||||||
B2P017: Capacities | |||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | ||||||
B2P018: Relations with stakeholders | |||||||
B2P018: Relations with stakeholders | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools |
|
| |||||
B2P019: Available tools | |||||||
B2P020: External accessibility | |||||||
B2P020: External accessibility | |||||||
C1P001: Unlocking Factors | |||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P001: Storage systems and E-mobility market penetration | 2 - Slightly important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Social acceptance (top-down) | 4 - Important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | |||||||
C1P002: Driving Factors | |||||||
C1P002: Climate Change adaptation need | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P002: Energy autonomy/independence | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | |||||||
C1P003: Administrative barriers | |||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P003: Lack of public participation | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P003: Fragmented and or complex ownership structure | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | |||||||
C1P004: Policy barriers | |||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | |||||||
C1P005: Legal and Regulatory barriers | |||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P005: Unfavorable local regulations for innovative technologies | 2 - Slightly important | 4 - Important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 5 - Very important |
C1P005: Building code and land-use planning hindering innovative technologies | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||
C1P006: Environmental barriers | |||||||
C1P006: Environmental barriers | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | ||||||
C1P007: Technical barriers | |||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important |
C1P007: Deficient planning | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Retrofitting work in dwellings in occupied state | 5 - Very important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P007: Inaccuracy in energy modelling and simulation | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P007: Difficult definition of system boundaries | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | |||||||
C1P008: Social and Cultural barriers | |||||||
C1P008: Inertia | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Difficulty of finding and engaging relevant actors | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P008: Lack of trust beyond social network | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P008: Rebound effect | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards environmentalism | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | |||||||
C1P009: Information and Awareness barriers | |||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||
C1P010: Financial barriers | |||||||
C1P010: Hidden costs | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P010: Economic crisis | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P010: Risk and uncertainty | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | |||||||
C1P011: Market barriers | |||||||
C1P011: Split incentives | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P011: Energy price distortion | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | |||||||
C1P012: Stakeholders involved | |||||||
C1P012: Government/Public Authorities |
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
| |||
C1P012: Financial/Funding |
|
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
|
| |||
C1P012: Business process management |
|
|
|
| |||
C1P012: Urban Services providers |
|
|
|
| |||
C1P012: Real Estate developers |
|
|
|
| |||
C1P012: Design/Construction companies |
|
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
|
| |||
C1P012: Other | |||||||
C1P012: Other (if any) | |||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)