Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Uncompare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Uncompare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Pamplona
Vienna, 16. District, Leben am Wilhelminenberg
Tartu, Annelinn
Umeå, Ålidhem district
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Örebro-Vivalla
Lubia (Soria), CEDER-CIEMAT
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityPamplonaVienna, 16. District, Leben am WilhelminenbergTartu, AnnelinnUmeå, Ålidhem districtBucharest, The Bucharest University of Economic Studies (ASE) PED LabÖrebro-VivallaLubia (Soria), CEDER-CIEMATAalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesnononono
PED relevant case studyyesnoyesyesnonoyesnoyes
PED Lab.noyesnononoyesnoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesnoyes
Annual energy surplusnonononononononono
Energy communityyesyesyesyesnonoyesnono
Circularitynonononononononono
Air quality and urban comfortyesnonononononoyesno
Electrificationyesnonoyesnonononono
Net-zero energy costnonononononononono
Net-zero emissionnononononononoyesno
Self-sufficiency (energy autonomous)nononononononoyesno
Maximise self-sufficiencynonononononononoyes
Othernononononoyesnonono
Other (A1P004)Smart Buildings
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/2403/2412/2310/2203/2504/2411/1911/22
A1P007: End Date
A1P007: End date07/2812/2711/2609/2512/2712/2612/2311/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • Umeå Energi
            • http://www.ceder.es/redes-inteligentes,
            • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
            • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.814588-1.6432316.30311226.748120.263026.0973943259149815.19050-2.50810.007
            Y Coordinate (latitude):38.07734942.8168748.21850158.370863.825844.4472496751992959.2959541.60357.041028
            A1P012: Country
            A1P012: CountryGreeceSpainAustriaEstoniaSwedenRomaniaSwedenSpainDenmark
            A1P013: City
            A1P013: CityMunicipality of KifissiaPamplonaViennaTartuUmeåBucharestÖrebro-VivallaLubia - SoriaAalborg
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCfbDfbDfbCsaDwbCfbDfb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicVirtualGeographicGeographicGeographicGeographicGeographicVirtual
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:MixedPrivatePublicPublicPublicPublicPublicPublic
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerSingle OwnerMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED6
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]42000
            A1P020: Total ground area
            A1P020: Total ground area [m²]23550000540000052000485640000031308000
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area000010000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenonoyesnononononono
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernonononononononono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnononoyesnonononono
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonononononono
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernononononoyesnonono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnonononononononono
            A1P022i: Add the value in EUR if available [EUR]
            A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesyesyes
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononoyesno
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities,
            • Boosting local businesses,
            • Boosting local and sustainable production
            A1P023: Other
            A1P024: More comments:
            A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaOscar Puyal LAtorreRachel Leutgöb (e7)Dr. Gonçalo Homem De Almeida Rodriguez CorreiaGireesh NairAdela BaraPer CarlborgDr. Raquel RamosKristian Olesen
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamEndef Engineering SLe7 GmbHDelft University of TechnologyUmea MunicipalityThe Bucharest University of Economic StudiesÖrebro UniversityCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)Aalborg University
            A1P028: AffiliationMunicipality / Public BodiesSME / IndustryResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / University
            A1P028: Other
            A1P029: Emailgiavasoglou@kifissia.groscar.puyal@endef.comrachel.leutgoeb@e-sieben.atg.correia@tudelft.nlgireesh.nair@umu.seBara.adela@ie.ase.roper.carlborg@oru.seraquel.ramos@ciemat.esKristian@plan.aau.dk
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorQiaochu FanDr. Oscar SecoAlex Søgaard Moreno
            A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nloscar.seco@ciemat.esasm@aalborg.dk
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency
            • Energy efficiency,
            • Energy production,
            • Urban comfort (pollution, heat island, noise level etc.)
            • Energy efficiency,
            • Energy flexibility,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Digital technologies,
            • Indoor air quality
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • Digital technologies,
            • Indoor air quality
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            A2P001: Other
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsSimulation tools: City Energy Analyst and PolysunEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Stakeholder engagement, expert energy system analysis, future scenarios
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesYesNo
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoNoNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1218
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0148
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesnononoyesnonoyesno
            A2P011: PV - specify production in GWh/annum [GWh/annum]0.249
            A2P011: Windnononononononoyesyes
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydronononononononoyesno
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnononononononoyesno
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnonononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnonononononononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
            A2P011: Othernonononononononoyes
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnononononononoyesno
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnononononononoyesno
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnononononononoyesno
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnononononononoyesyes
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
            A2P012: Biomass_peat_heatnonononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnonononononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_firewood_thnononononononoyesno
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]6.1620
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]399
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnonononononononono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonononononononono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonononononononono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernonononononononoyes
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnonononononononono
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
            A2P018: Windnonononononononono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononononononononono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononononononono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonononononononono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonononononononono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernonononononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonononononononono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonononononononono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnonononoyesnononono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnonononoyesnononono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonononononononono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonononononononono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononononononono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernonononononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary000000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Security
            A2P022: Health
            A2P022: Education
            A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsYes
            A2P022: EnergyYesTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergyYesYes
            A2P022: Water
            A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
            A2P022: Housing and CommunityNumber of people interested in participating in an energy community
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesyesyesnonoyesyes
            A2P023: Solar thermal collectorsnononononononoyesyes
            A2P023: Wind Turbinesnononoyesnononoyesno
            A2P023: Geothermal energy systemnonoyesnonononoyesno
            A2P023: Waste heat recoverynononononononoyesyes
            A2P023: Waste to energynonononononononoyes
            A2P023: Polygenerationnononononononoyesno
            A2P023: Co-generationnononononononoyesno
            A2P023: Heat Pumpnonoyesnonononoyesyes
            A2P023: Hydrogennononononononoyesno
            A2P023: Hydropower plantnononononononoyesno
            A2P023: Biomassnononononononoyesyes
            A2P023: Biogasnonononononononono
            A2P023: OtherPhotovoltaics are considered for the next years
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)nonononoyesyesnoyesno
            A2P024: Energy management systemnononoyesnoyesnoyesyes
            A2P024: Demand-side managementnononoyesyesyesyesyesyes
            A2P024: Smart electricity gridnononoyesnononoyesyes
            A2P024: Thermal Storagenonoyesnonononoyesyes
            A2P024: Electric Storagenononoyesnononoyesyes
            A2P024: District Heating and Coolingnonoyesnononoyesyesyes
            A2P024: Smart metering and demand-responsive control systemsnoyesnononononoyesyes
            A2P024: P2P – buildingsnonononononononono
            A2P024: OtherDistrict Heating
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnonoyesyesyesyesyesyesyes
            A2P025: Energy efficiency measures in historic buildingsnonoyesnonoyesnonono
            A2P025: High-performance new buildingsnonononononononono
            A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnonononono
            A2P025: Urban data platformsnononoyesnonononono
            A2P025: Mobile applications for citizensnonononononononono
            A2P025: Building services (HVAC & Lighting)nononononoyesnoyesno
            A2P025: Smart irrigationnonononononononono
            A2P025: Digital tracking for waste disposalnonononononononono
            A2P025: Smart surveillancenoyesnononoyesnonoyes
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nononoyesnonononono
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonononono
            A2P026: e-Mobilitynononoyesnonononono
            A2P026: Soft mobility infrastructures and last mile solutionsnonononononononono
            A2P026: Car-free areanononononononoyesno
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesYesYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoNo
            A2P029: If yes, please specify and/or enter notes
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies,
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Smart cities strategies,
            • Urban Renewal Strategies,
            • New development strategies,
            • National / international city networks addressing sustainable urban development and climate neutrality
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.Reduction of 1018000 tons CO2 by 2030
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps,
            • Biogas
            A3P003: OtherNA
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Innovative business models
            • Innovative business models,
            • Local trading,
            • Existing incentives
            • Innovative business models,
            • Demand management Living Lab
            • Demand management Living Lab
            • Life Cycle Cost,
            • Circular economy models
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Co-creation / Citizen engagement strategies
            • Strategies towards (local) community-building
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Prevention of energy poverty,
            • Digital Inclusion
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies,
            • Citizen Social Research,
            • Quality of Life,
            • Affordability,
            • Prevention of energy poverty,
            • Citizen/owner involvement in planning and maintenance
            • Digital Inclusion,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Policy Forums,
            • Citizen/owner involvement in planning and maintenance
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning,
            • District Energy plans
            • District Energy plans
            • Digital twinning and visual 3D models
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • City Vision 2050
            • District Energy plans,
            • Building / district Certification
            • Strategic urban planning,
            • District Energy plans
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Greening strategies
            • Carbon-free,
            • Life Cycle approach
            • Energy Neutral,
            • Low Emission Zone,
            • Nature Based Solutions (NBS)
            • Carbon-free
            • Energy Neutral
            • Energy Neutral,
            • Low Emission Zone,
            • Pollutants Reduction,
            • Greening strategies
            • Energy Neutral,
            • Net zero carbon footprint
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionThe large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaRuralSuburban area
            B1P004: Type of district
            B2P004: Type of district
            • Renovation
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Retrofitting Area
            • Retrofitting Area
            B1P006: Year of construction
            B1P006: Year of construction
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential16.931
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential
            B1P011: Population density before intervention
            B1P011: Population density before intervention00000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention00000000
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnonononoyesnononono
            B1P013 - Residential: Specify the sqm [m²]
            B1P013: Officenonononononononono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynonononononononono
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnonononononononono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnonononononononono
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnonononononononono
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernonononononononono
            B1P013 - Other: Specify the sqm [m²]
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnonononoyesnononono
            B1P014 - Residential: Specify the sqm [m²]
            B1P014: Officenonononononononono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonononononononono
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnonononononononono
            B1P014 - Institutional: Specify the sqm [m²]
            B1P014: Natural areasnonononononononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonononononononono
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernonononononononono
            B1P014 - Other: Specify the sqm [m²]
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
            B2P002: Installation life time
            B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
            B2P003: Scale of action
            B2P003: ScaleDistrictDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esKristian Olesen
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            • Civic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabResearch center/UniversityResearch center/University
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Industrial
            • Academia,
            • Private
            B2P009: Other
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Buildings,
            • Demand-side management,
            • Prosumers,
            • Renewable generation,
            • Energy storage,
            • Energy networks,
            • Efficiency measures,
            • Information and Communication Technologies (ICT),
            • Ambient measures,
            • Social interactions
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools for prototyping and modelling
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Equipment
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
            C1P001: Storage systems and E-mobility market penetration3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
            C1P001: The ability to predict Multiple Benefits1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
            C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
            C1P001: Social acceptance (top-down)5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important
            C1P001: Availability of RES on site (Local RES)1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
            C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
            C1P002: Economic growth need2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important
            C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
            C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
            C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
            C1P005: Regulatory instability3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P005: Non-effective regulations4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P005: Insufficient or insecure financial incentives4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
            C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers3 - Moderately important
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
            C1P007: Deficient planning3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
            C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
            C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
            C1P007: Difficult definition of system boundaries3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
            C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
            C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
            C1P009: Lack of awareness among authorities4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
            C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
            C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
            C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
            C1P010: Economic crisis3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important
            C1P010: Lack of consolidated and tested business models4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important
            C1P010: Limited access to capital and cost disincentives3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
            C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • Design/demand aggregation
            C1P012: Financial/Funding
            • None
            C1P012: Analyst, ICT and Big Data
            • Monitoring/operation/management
            C1P012: Business process management
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Urban Services providers
            • Planning/leading
            C1P012: Real Estate developers
            • None
            C1P012: Design/Construction companies
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • None
            C1P012: Industry/SME/eCommerce
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Other
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)