Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Tartu, Estonia
Umeå, Ålidhem district
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Halmstad, Fyllinge
Graz, Reininghausgründe
Ankara, Çamlık District
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityTartu, EstoniaUmeå, Ålidhem districtAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkHalmstad, FyllingeGraz, ReininghausgründeAnkara, Çamlık District
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnonoyesyes
PED relevant case studyyesyesnoyesyesnoyes
PED Lab.nononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyes
Annual energy surplusnonononononoyes
Energy communityyesyesnonoyesnoyes
Circularitynonononononono
Air quality and urban comfortyesnononononono
Electrificationyesyesnonononoyes
Net-zero energy costnonononononoyes
Net-zero emissionnonononononoyes
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynononoyesnonoyes
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/2310/2211/2201/21201910/22
A1P007: End Date
A1P007: End date11/2609/2511/2501/30202509/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • GIS open datasets
  • General statistical datasets
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Umeå Energi
        • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
        • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458826.748120.263010.00712.9205415.40744032.795369
        Y Coordinate (latitude):38.07734958.370863.825857.04102856.6519447.060739.881812
        A1P012: Country
        A1P012: CountryGreeceEstoniaSwedenDenmarkSwedenAustriaTurkey
        A1P013: City
        A1P013: CityMunicipality of KifissiaTartuUmeåAalborgHalmstadGrazAnkara
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaDfbDfbDfbDwbDfbDsb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicPublicPublicMixedMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED250100257
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]4200022600
        A1P020: Total ground area
        A1P020: Total ground area [m²]54000005200031308000100000050800
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0010000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesyesno
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnoyesnononoyesno
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesno
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesnoyes
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Boosting local and sustainable production
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Gonçalo Homem De Almeida Rodriguez CorreiaGireesh NairKristian OlesenMarkus OlofsgårdKatharina SchwarzProf. Dr. İpek Gürsel DİNO
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamDelft University of TechnologyUmea MunicipalityAalborg UniversityAFRYStadtLABOR, Innovationen für urbane Lebensqualität GmbHMiddle East Technical University
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherSME / IndustryResearch Center / University
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grg.correia@tudelft.nlgireesh.nair@umu.seKristian@plan.aau.dkmarkus.olofsgard@afry.comkatharina.schwarz@stadtlaborgraz.atipekg@metu.edu.tr
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorQiaochu FanAlex Søgaard MorenoHans SchnitzerAssoc. Prof. Onur Taylan
        A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nlasm@aalborg.dkhans.schnitzer@stadtlaborgraz.atotaylan@metu.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Water use,
        • Indoor air quality,
        • Other
        • Energy efficiency,
        • Energy production,
        • Construction materials
        A2P001: OtherUrban Management; Air Quality
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsSimulation tools: City Energy Analyst and PolysunStakeholder engagement, expert energy system analysis, future scenarioslink based regulation of electricity gridEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Mobility is not included in the calculations.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2183.446
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]01480.528
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnoyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.2493.4240
        A2P011: Windnononoyesnonono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononoyesnonono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononoyesnoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.Groundwater (used for heat pumps)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]6.16203.976
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]399
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononoyes
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononoyesnonono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononoyesno
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonoyesnonoyesno
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonoyesnonoyesno
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsx
        A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergyx
        A2P022: Waterx
        A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resiliencex
        A2P022: Housing and Communityx
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononoyesnonono
        A2P023: Wind Turbinesnoyesnonononono
        A2P023: Geothermal energy systemnonononononono
        A2P023: Waste heat recoverynononoyesnoyesno
        A2P023: Waste to energynononoyesnonono
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpnononoyesnoyesyes
        A2P023: Hydrogennonononononono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnononoyesnonono
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnoyesyesno
        A2P024: Energy management systemnoyesnoyesnonono
        A2P024: Demand-side managementnoyesyesyesyesnono
        A2P024: Smart electricity gridnoyesnoyesyesnono
        A2P024: Thermal Storagenononoyesnoyesno
        A2P024: Electric Storagenoyesnoyesnonono
        A2P024: District Heating and Coolingnononoyesnoyesno
        A2P024: Smart metering and demand-responsive control systemsnononoyesyesnono
        A2P024: P2P – buildingsnonononononono
        A2P024: OtherDistrict Heating
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnonononononono
        A2P025: High-performance new buildingsnononononoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononoyesno
        A2P025: Urban data platformsnoyesnonononono
        A2P025: Mobile applications for citizensnononononoyesno
        A2P025: Building services (HVAC & Lighting)nonononononoyes
        A2P025: Smart irrigationnononononoyesno
        A2P025: Digital tracking for waste disposalnonononononono
        A2P025: Smart surveillancenononoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyesno
        A2P026: e-Mobilitynoyesnononoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesno
        A2P026: Car-free areanononononoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergieausweis mandatory if buildings/ flats/ apartments are sold
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoYesNo
        A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherNA
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDecarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Life Cycle Cost,
        • Circular economy models
        • Local trading
        • PPP models,
        • Local trading
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Policy Forums,
        • Citizen/owner involvement in planning and maintenance
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Affordability,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning
        • Strategic urban planning,
        • City Vision 2050,
        • Building / district Certification
        • Digital twinning and visual 3D models,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Carbon-free
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Carbon-free
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone
        A3P009: OtherEnergy Positive, Low Emission Zone
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their ownMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.PED-ACT project.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • New construction
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction20251986
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential16.9310
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential10000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential0
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000000.010
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesnononoyes
        B1P013 - Residential: Specify the sqm [m²]50800
        B1P013: Officenonononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononoyesyesno
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesnonoyesyes
        B1P014 - Residential: Specify the sqm [m²]50800
        B1P014: Officenononononoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesno
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononoyesno
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononoyesno
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
        B2P002: Installation life time
        B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationKristian Olesen
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important
        C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important2 - Slightly important
        C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important4 - Important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P002: Energy autonomy/independence5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Regulatory instability3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important
        C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
        C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important5 - Very important
        C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P010: Economic crisis3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P010: Risk and uncertainty4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important4 - Important
        C1P010: Lack of consolidated and tested business models5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
        C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P011: Energy price distortion5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)