Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Romania, Alba Iulia PED
City of Espoo, Espoonlahti district, Lippulaiva block
Trenčín
Oulu, Kaukovainio
Graz, Reininghausgründe
Ankara, Çamlık District
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityRomania, Alba Iulia PEDCity of Espoo, Espoonlahti district, Lippulaiva blockTrenčínOulu, KaukovainioGraz, ReininghausgründeAnkara, Çamlık District
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesyesyes
PED relevant case studyyesnononononoyes
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyes
Annual energy surplusnononoyesnonoyes
Energy communityyesyesnoyesnonoyes
Circularitynonononoyesnono
Air quality and urban comfortyesyesnonononono
Electrificationyesyesnonoyesnoyes
Net-zero energy costnonononononoyes
Net-zero emissionnonononononoyes
Self-sufficiency (energy autonomous)noyesnoyesnonono
Maximise self-sufficiencynoyesyesnononoyes
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationPlanning PhaseIn operationImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2306/1806/19201910/22
A1P007: End Date
A1P007: End date12/2703/2211/23202509/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • GIS open datasets
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Historical sources,
    • GIS of the municipality,
    • Basic BEMs
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458823.58011209802323524.654318.04687051544292225.51759508409350715.40744032.795369
    Y Coordinate (latitude):38.07734946.07701527868011560.149148.89925138034027464.9928809817313247.060739.881812
    A1P012: Country
    A1P012: CountryGreeceRomaniaFinlandSlovakiaFinlandAustriaTurkey
    A1P013: City
    A1P013: CityMunicipality of KifissiaAlba IuliaEspooTrencinOuluGrazAnkara
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaDfbDfbCfbDfcDfbDsb
    A1P015: District boundary
    A1P015: District boundaryVirtualFunctionalGeographicFunctionalGeographicGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographicRegional (close to virtual)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedMixedMixedPrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED9106100257
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]11200020001970022600
    A1P020: Total ground area
    A1P020: Total ground area [m²]1650007500060000100000050800
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0010000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesyesyesyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnoyesnononoyesno
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesyesyesno
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononoyesnonono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnoyesnoyes
    A1P022i: Add the value in EUR if available [EUR]308875
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyes
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    • Job creation,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Boosting local and sustainable production
    A1P023: OtherBoosting sustainability for public schoolsDeveloping and demonstrating new solutions
    A1P024: More comments:
    A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.505
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaTudor DrâmbăreanElina EkelundVladimír ŠkolaSamuli RinneKatharina SchwarzProf. Dr. İpek Gürsel DİNO
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMunicipality of Alba IuliaCitycon OyjCity of TrencinCity of OuluStadtLABOR, Innovationen für urbane Lebensqualität GmbHMiddle East Technical University
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryOtherMunicipality / Public BodiesSME / IndustryResearch Center / University
    A1P028: OtherMaria Elena SeemannProject Manager
    A1P029: Emailgiavasoglou@kifissia.grtudor.drambarean@apulum.roElina.ekelund@citycon.comvladimir.skola@trencin.sksamuli.rinne@ouka.fikatharina.schwarz@stadtlaborgraz.atipekg@metu.edu.tr
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayorMaria-Elena SeemannElina EkelundVladimír ŠkolaSamuli RinneHans SchnitzerAssoc. Prof. Onur Taylan
    A1P031: Emailstavros.zapantis@gmail.commaria.seemann@apulum.roElina.ekelund@citycon.comvladimir.skola@trencin.sksamuli.rinne@ouka.fihans.schnitzer@stadtlaborgraz.atotaylan@metu.edu.tr
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Water use,
    • Indoor air quality,
    • Other
    • Energy efficiency,
    • Energy production,
    • Construction materials
    A2P001: OtherUrban Management; Air Quality
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000YesYesNoNoYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Mobility is not included in the energy model.Not included. However, there is a charging place for a shared EV in one building.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Mobility is not included in the calculations.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]5.52.13.446
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5.80.20.528
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesnoyesyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.13.4240
    A2P011: Windnonononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonoyesnonoyesno
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalnononononoyesno
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnonononoyesyesno
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernoyesnonononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Groundwater (used for heat pumps)
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]11.32.33.976
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]5.76
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononononoyes
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonononoyesyesno
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonononoyesyesno
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononoyesyesno
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononoyesnono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononoyesnono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernoyesyesnononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononoyesno
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononoyesyesno
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnononononoyesno
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernoyesnonononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary001.053231939163503.285714285714300
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]000.036
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securityyes
    A2P022: HealthyesEncouraging a healthy lifestyle
    A2P022: Educationyes
    A2P022: MobilityyesModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingx
    A2P022: EnergyyesOn-site energy ratioFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionx
    A2P022: Wateryesx
    A2P022: Economic developmentyesTotal investments, Payback time, Economic value of savingsx
    A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyx
    A2P022: WasteRecycling rate
    A2P022: OtherSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnoyesyesnoyesyesyes
    A2P023: Solar thermal collectorsnoyesnonononono
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemnonoyesnononono
    A2P023: Waste heat recoverynonoyesnoyesyesno
    A2P023: Waste to energynonononononono
    A2P023: Polygenerationnoyesnonononono
    A2P023: Co-generationnoyesnonoyesnono
    A2P023: Heat Pumpnoyesnonoyesyesyes
    A2P023: Hydrogennonononononono
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassnonononoyesnono
    A2P023: Biogasnonononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesyesno
    A2P024: Energy management systemnoyesyesyesyesnono
    A2P024: Demand-side managementnoyesnonononono
    A2P024: Smart electricity gridnoyesyesnononono
    A2P024: Thermal Storagenonoyesyesyesyesno
    A2P024: Electric Storagenoyesyesyesnonono
    A2P024: District Heating and Coolingnononoyesyesyesno
    A2P024: Smart metering and demand-responsive control systemsnoyesnonononono
    A2P024: P2P – buildingsnoyesnonononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesnoyesyesnoyes
    A2P025: Energy efficiency measures in historic buildingsnononoyesnonono
    A2P025: High-performance new buildingsnonoyesnoyesyesno
    A2P025: Smart Public infrastructure (e.g. smart lighting)noyesyesnonoyesno
    A2P025: Urban data platformsnoyesnonoyesnono
    A2P025: Mobile applications for citizensnononononoyesno
    A2P025: Building services (HVAC & Lighting)noyesyesyesyesnoyes
    A2P025: Smart irrigationnononononoyesno
    A2P025: Digital tracking for waste disposalnonononononono
    A2P025: Smart surveillancenonononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnonoyesyesno
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesnoyesyesno
    A2P026: e-Mobilitynoyesyesnoyesyesno
    A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesyesno
    A2P026: Car-free areanononononoyesno
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaSUMP AVAILABLE- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesYesNo
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate => Energy efficiency class B (2018 version)The obligatory buildijng energy classificationEnergieausweis mandatory if buildings/ flats/ apartments are sold
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesYesNoYesNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Klimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Convenant of MayorsRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Carbon neutrality by 2035City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherSECAP developed in 2023
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesThermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PED- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.SELF SUSTAINABILITY, SELF EFFICIENCYDeveloping and demonstrating solutions for carbon neutralityReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourEducation Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating systemFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.BASED ON SECAP DEVELOPED IN 2023E. g. visualizing energy and water consumption- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Open data business models,
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab
    • Innovative business models
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • PPP models,
    • Local trading
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Affordability,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • City Vision 2050,
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Cool Materials,
    • Nature Based Solutions (NBS)
    • Other
    • Energy Neutral,
    • Net zero carbon footprint
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    A3P009: OtherCarbon free in terms of energyEnergy Positive, Low Emission Zone
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionPositive energy districtLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.GOOD MIX OF PUBLIC PRIVATE BUILDINGSThe original idea is that the area produces at least as much it consumes.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersReplication of unique PED know howDeveloping systems towards carbon neutrality. Also urban renewal.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.PED-ACT project.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • New construction,
    • Renovation
    • New construction,
    • Renovation
    • New construction
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • New Development,
    • Retrofitting Area
    • New Development
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction202220251986
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential35000
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential350010000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential0
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention00000.0583333333333330.010
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonononoyesnoyes
    B1P013 - Residential: Specify the sqm [m²]50800
    B1P013: Officenonononononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononononoyesno
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonoyesnoyesnono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnoyesnonononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonoyesnoyesyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononoyesnono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesnoyesyesyes
    B1P014 - Residential: Specify the sqm [m²]50800
    B1P014: Officenononononoyesno
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonoyesnoyesyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesnononoyesno
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonononoyesyesno
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonononoyesyesno
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: Scale
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
    C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important5 - Very important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
    C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
    C1P002: Urban re-development of existing built environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
    C1P002: Economic growth need2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
    C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important
    C1P002: Energy autonomy/independence5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
    C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important
    C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
    C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
    C1P005: Regulatory instability3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
    C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
    C1P005: Insufficient or insecure financial incentives4 - Important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
    C1P005: Shortage of proven and tested solutions and examples3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P007: Deficient planning3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Lack of well-defined process4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Grid congestion, grid instability4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
    C1P008: Rebound effect4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important
    C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
    C1P010: Economic crisis4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
    C1P010: Risk and uncertainty2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
    C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
    C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
    C1P011: Energy price distortion3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Monitoring/operation/management
    • None
    C1P012: Urban Services providers
    • None
    • Planning/leading
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)