Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Findhorn, the Park
Lubia (Soria), CEDER-CIEMAT
Espoo, Kera
Groningen, PED South
Istanbul, Ozyegin University Campus
Maia, Sobreiro Social Housing
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityFindhorn, the ParkLubia (Soria), CEDER-CIEMATEspoo, KeraGroningen, PED SouthIstanbul, Ozyegin University CampusMaia, Sobreiro Social Housing
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesnonono
PED relevant case studyyesnonoyesnoyesno
PED Lab.nonoyesnoyesnoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyes
Annual energy surplusnoyesnonoyesnono
Energy communityyesyesnonoyesnono
Circularitynoyesnoyesyesnono
Air quality and urban comfortyesnoyesnonoyesno
Electrificationyesyesnononoyesno
Net-zero energy costnonononononono
Net-zero emissionnoyesyesnoyesnono
Self-sufficiency (energy autonomous)nonoyesnononono
Maximise self-sufficiencynoyesnonononoyes
Othernononononoyesno
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/6211/1901/1512/1810/2410/21
A1P007: End Date
A1P007: End date12/2312/3512/2310/2810/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
      • TNO, Hanze, RUG,
      • Ped noord book
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.814588-3.6099-2.50824.753777786.59065529.258300-8.373557
          Y Coordinate (latitude):38.07734957.653041.60360.2162222253.20408741.03060041.135804
          A1P012: Country
          A1P012: CountryGreeceUnited KingdomSpainFinlandNetherlandsTurkeyPortugal
          A1P013: City
          A1P013: CityMunicipality of KifissiaFindhornLubia - SoriaEspooGroningenIstanbulMaia
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDwcCfbDfbCfaCfaCsb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicGeographicFunctionalGeographicVirtual
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedPrivatePublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED160641522
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]7.86
          A1P020: Total ground area
          A1P020: Total ground area [m²]180000640000058000045.093285.400
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenoyesnonoyesyesno
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononoyesnoyes
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnoyesnonoyesnoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononoyes
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesyesyes
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonoyesnononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: OtherCircular economy
          A1P024: More comments:
          A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaStefano NebioloDr. Raquel RamosJoni MäkinenJasper Tonen, Elisabeth KoopsCem KeskinAdelina Rodrigues
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFindhorn Innovation Research and Education CICCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)City of EspooMunicipality of GroningenCenter for Energy, Environment and Economy, Ozyegin UniversityMaia Municipality (CM Maia) – Energy and Mobility division
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public Bodies
          A1P028: Other
          A1P029: Emailgiavasoglou@kifissia.grstefanonebiolo@gmail.comraquel.ramos@ciemat.esjoni.makinen@espoo.fiJasper.tonen@groningen.nlcem.keskin@ozyegin.edu.trdscm.adelina@cm-maia.pt
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorDr. Oscar SecoM. Pınar MengüçCarolina Gonçalves (AdEPorto)
          A1P031: Emailstavros.zapantis@gmail.comoscar.seco@ciemat.espinar.menguc@ozyegin.edu.trcarolinagoncalves@adeporto.eu
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesNoNoYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not included, the campus is a non car area except emergencies
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.51.86
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.219.41.45
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesnoyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]4
          A2P011: Windnoyesyesnononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononoyesnononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonoyesnononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonoyesnoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnoyesyesnoyesnoyes
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnoyesyesnoyesnono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnoyesyesyesyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnoyesyesnononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes3x225 kW wind turbines + 100 kW PVLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Geothermal heatpump systems, Waste heat from data centers
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]1.278.83.5
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]1.215.4
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononoyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
          A2P018: Windnonononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Health
          A2P022: Education
          A2P022: Mobility
          A2P022: Energy
          A2P022: Water
          A2P022: Economic development
          A2P022: Housing and Community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnoyesyesnoyesnoyes
          A2P023: Wind Turbinesnoyesyesnonoyesno
          A2P023: Geothermal energy systemnonoyesnoyesnono
          A2P023: Waste heat recoverynoyesyesyesyesnono
          A2P023: Waste to energynonononoyesnono
          A2P023: Polygenerationnonoyesnononono
          A2P023: Co-generationnonoyesnonoyesno
          A2P023: Heat Pumpnoyesyesyesyesyesyes
          A2P023: Hydrogennonoyesnononono
          A2P023: Hydropower plantnonoyesnononono
          A2P023: Biomassnoyesyesnononono
          A2P023: Biogasnonononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyesyes
          A2P024: Energy management systemnoyesyesyesyesyesyes
          A2P024: Demand-side managementnonoyesyesnoyesno
          A2P024: Smart electricity gridnonoyesyesnonono
          A2P024: Thermal Storagenoyesyesnoyesnono
          A2P024: Electric Storagenoyesyesnoyesyesyes
          A2P024: District Heating and Coolingnoyesyesyesyesyesno
          A2P024: Smart metering and demand-responsive control systemsnonoyesnoyesyesyes
          A2P024: P2P – buildingsnonononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesnononoyes
          A2P025: Energy efficiency measures in historic buildingsnonononoyesnono
          A2P025: High-performance new buildingsnoyesnoyesyesyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnoyes
          A2P025: Urban data platformsnononoyesyesnono
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesyes
          A2P025: Smart irrigationnononononoyesno
          A2P025: Digital tracking for waste disposalnonononononoyes
          A2P025: Smart surveillancenononononoyesno
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnonoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonono
          A2P026: e-Mobilitynoyesnoyesyesyesyes
          A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesno
          A2P026: Car-free areanonoyesnonoyesno
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoYesNo
          A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Other
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Carbon and Energy Neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Demand management Living Lab
          • PPP models,
          • Circular economy models
          • Innovative business models,
          • Blockchain
          • Innovative business models,
          • PPP models,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Net zero carbon footprint
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaRuralRuralUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Re-use / Transformation Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction2024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential14000
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential9800
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential100009800
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000340
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000.041379310344828034.3377715487040
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononoyesnonono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenononoyesnonono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononoyesnonono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononoyesno
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasnoyesnonononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononoyesnonono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesnoyesnonono
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenoyesnoyesnonono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononoyesnonono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononoyesno
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnoyesnonononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononoyesnonono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
          B2P003: Scale of action
          B2P003: ScaleDistrictDistrictVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          • Civic
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Industrial
          • Academia,
          • Private,
          • Industrial,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Equipment
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Economical / Financial
          • Energy,
          • Social,
          • Economical / Financial
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product._Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.The relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling
          • Energy modelling,
          • Social models,
          • Business and financial models
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important4 - Important
          C1P001: Storage systems and E-mobility market penetration1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
          C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important4 - Important
          C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important4 - Important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
          C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important4 - Important
          C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important5 - Very important4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important4 - Important
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important
          C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important
          C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important
          C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers3 - Moderately importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
          C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important4 - Important
          C1P008: Rebound effect4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important4 - Important5 - Very important5 - Very important3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
          C1P009: Lack of awareness among authorities1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important4 - Important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
          C1P010: Economic crisis1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important
          C1P010: Risk and uncertainty1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important4 - Important
          C1P010: Lack of consolidated and tested business models1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important4 - Important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P011: Energy price distortion1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • None
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Planning/leading
          • Planning/leading,
          • Construction/implementation
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • None
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)