Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Ankara, Çamlık District
Umeå, Ålidhem district
Tartu, City centre area
Groningen, PED South
Stor-Elvdal, Campus Evenstad
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Schönbühel-Aggsbach, Schönbühel an der Donau
Uden, Loopkantstraat
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityAnkara, Çamlık DistrictUmeå, Ålidhem districtTartu, City centre areaGroningen, PED SouthStor-Elvdal, Campus EvenstadAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkSchönbühel-Aggsbach, Schönbühel an der DonauUden, Loopkantstraat
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnononononono
PED relevant case studyyesyesnoyesnoyesyesyesyes
PED Lab.nononoyesyesnoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesyes
Annual energy surplusnoyesnonoyesyesnonoyes
Energy communityyesyesnonoyesnonoyesno
Circularitynononoyesyesnononono
Air quality and urban comfortyesnononononononono
Electrificationyesyesnoyesnonononoyes
Net-zero energy costnoyesnononononoyesno
Net-zero emissionnoyesnoyesyesnononono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnoyesnonoyesyesno
Othernononononoyesnonono
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseIn operationPlanning PhaseImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date10/2210/2202/1612/1801/1311/2206/17
A1P007: End Date
A1P007: End date09/2509/2507/2212/2312/2411/2505/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Umeå Energi
    • TNO, Hanze, RUG,
    • Ped noord book
      • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
      • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
      • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
      • https://www.synikia.eu/no/bibliotek/
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458832.79536920.263026.7227376.59065511.07877077353174610.00715.39695.6191
      Y Coordinate (latitude):38.07734939.88181263.825858.38071353.20408761.4260442039911257.04102848.275251.6606
      A1P012: Country
      A1P012: CountryGreeceTurkeySwedenEstoniaNetherlandsNorwayDenmarkAustriaNetherlands
      A1P013: City
      A1P013: CityMunicipality of KifissiaAnkaraUmeåTartuGroningenEvenstad, Stor-Elvdal municipalityAalborgSchönbühel an der DonauUden
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDsbDfbDfbCfaDwcDfbDfbCfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicFunctionalFunctionalGeographicVirtualGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivateMixedPublicPublicPrivatePrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED2571842201
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]2260042000352177.86100004772360
      A1P020: Total ground area
      A1P020: Total ground area [m²]508005200079314445.0933130800024503860
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area001000001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenononoyesyesnonoyesyes
      A1P022a: Add the value in EUR if available [EUR]65000007804440
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononoyesnononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingnononoyesyesyesnoyesno
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesnononono
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononoyesyesnono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local and sustainable production
      • Positive externalities
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaProf. Dr. İpek Gürsel DİNOGireesh NairJaanus TammJasper Tonen, Elisabeth KoopsÅse Lekang SørensenKristian OlesenGhazal EtminanTonje Healey Trulsrud
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMiddle East Technical UniversityUmea MunicipalityTartu City GovernmentMunicipality of GroningenSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesAalborg UniversityGhazal.Etminan@ait.ac.atNorwegian University of Science and Technology (NTNU)
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.gripekg@metu.edu.trgireesh.nair@umu.seJaanus.tamm@tartu.eeJasper.tonen@groningen.nlase.sorensen@sintef.noKristian@plan.aau.dkGhazal.Etminan@ait.ac.attonje.h.trulsrud@ntnu.no
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorAssoc. Prof. Onur TaylanKaspar AlevAlex Søgaard Moreno
      A1P031: Emailstavros.zapantis@gmail.comotaylan@metu.edu.trKaspar.alev@tartu.eeasm@aalborg.dk
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Simulation tools: City Energy Analyst and PolysunEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Stakeholder engagement, expert energy system analysis, future scenariosEnergy modelingEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesNoNoNoNoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.Mobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.not included
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.4469.11.860.772180.0660.148
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.52801.450.761480.0120.109
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesnoyesnoyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]3.42400.2490.0650.058
      A2P011: Windnonononononoyesnono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononoyesnonono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononoyesnono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononoyesnononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononoyesyesyesnonono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.50.045
      A2P012: Biomass_heatnonononoyesyesnonono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
      A2P012: Waste heat+HPnonononoyesnoyesnono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononoyesnononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.*Annual energy use below is presentedin primary energy consumption
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]3.9766.11.5006200.0790.194
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]13990.00110.0368
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnonononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononoyesnono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononononononoyesno
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononononoyesno
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononononoyesno
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonoyesnononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonoyesnononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononoyesno
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]9804-0.00043
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community
      A2P022: Education
      A2P022: MobilitySustainable mobility
      A2P022: EnergyEnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
      A2P022: Water
      A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
      A2P022: Housing and CommunitySpecify the associated KPIsdemographic composition, diverse community, social cohesion
      A2P022: Waste
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnonononoyesyesyesnono
      A2P023: Wind Turbinesnonononononononono
      A2P023: Geothermal energy systemnonononoyesnononoyes
      A2P023: Waste heat recoverynonononoyesnoyesnono
      A2P023: Waste to energynonononoyesnoyesnono
      A2P023: Polygenerationnonononononononono
      A2P023: Co-generationnononononoyesnonono
      A2P023: Heat Pumpnoyesnonoyesnoyesyesyes
      A2P023: Hydrogennonononononononono
      A2P023: Hydropower plantnonononononononono
      A2P023: Biomassnononoyesnoyesyesnono
      A2P023: Biogasnononoyesnonononono
      A2P023: OtherThe Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyesnonono
      A2P024: Energy management systemnononoyesyesyesyesyesyes
      A2P024: Demand-side managementnonoyesnonoyesyesnoyes
      A2P024: Smart electricity gridnonononononoyesnono
      A2P024: Thermal Storagenonononoyesyesyesnono
      A2P024: Electric Storagenonononoyesyesyesnono
      A2P024: District Heating and Coolingnononoyesyesyesyesnono
      A2P024: Smart metering and demand-responsive control systemsnonononoyesyesyesnoyes
      A2P024: P2P – buildingsnononononononoyesno
      A2P024: OtherDistrict HeatingBidirectional electric vehicle (EV) charging (V2G)
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesyesyesnonoyesyesno
      A2P025: Energy efficiency measures in historic buildingsnonononoyesnonoyesno
      A2P025: High-performance new buildingsnonononoyesyesnonoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnononono
      A2P025: Urban data platformsnononoyesyesnononono
      A2P025: Mobile applications for citizensnononoyesnonononono
      A2P025: Building services (HVAC & Lighting)noyesnonononononoyes
      A2P025: Smart irrigationnonononononononono
      A2P025: Digital tracking for waste disposalnonononononononono
      A2P025: Smart surveillancenononoyesnonoyesnono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononoyesnonononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonononono
      A2P026: e-Mobilitynononoyesyesyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononononono
      A2P026: Car-free areanonononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesYesYesYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)EPC = 0, energy neutral building
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoNoNo
      A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      A3P003: OtherNA
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      • Life Cycle Cost,
      • Circular economy models
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Digital twinning and visual 3D models,
      • District Energy plans
      • District Energy plans
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone
      • Carbon-free
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionÇamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPED-ACT project.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaRuralSuburban areaRurbanSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area,
      • Preservation Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction1986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential450016.931
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesyesyesnononoyesno
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenononononononoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononoyesnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononoyesnonononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesnononoyesyes
      B1P014 - Residential: Specify the sqm [m²]508002394
      B1P014: Officenononononononoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesnonononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononoyesnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnonononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.An ongoing process and dialogue with local stakeholders to determine the future development of the area.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.Kristian Olesen
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Civic
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important4 - Important3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important2 - Slightly important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important3 - Moderately important
      C1P001: Social acceptance (top-down)5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P002: Energy autonomy/independence5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Non-effective regulations4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant
      C1P009: Lack of awareness among authorities4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important1 - Unimportant5 - Very important2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P010: Economic crisis5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P010: Risk and uncertainty4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P011: Energy price distortion4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      • Planning/leading
      • Planning/leading
      C1P012: Urban Services providers
      • Construction/implementation
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Real Estate developers
      • None
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • None
      • Construction/implementation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Design/demand aggregation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)