Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Ankara, Çamlık District
Riga, Ķīpsala, RTU smart student city
Évora, Portugal
Schönbühel-Aggsbach, Schönbühel an der Donau
Groningen, PED South
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Innsbruck, Campagne-Areal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityAnkara, Çamlık DistrictRiga, Ķīpsala, RTU smart student cityÉvora, PortugalSchönbühel-Aggsbach, Schönbühel an der DonauGroningen, PED SouthAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkInnsbruck, Campagne-Areal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonononono
PED relevant case studyyesyesnoyesyesnoyesyes
PED Lab.nononoyesnoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyesyesyesyes
Annual energy surplusnoyesnoyesnoyesnono
Energy communityyesyesyesyesyesyesnono
Circularitynononononoyesnono
Air quality and urban comfortyesnonononononono
Electrificationyesyesnononononono
Net-zero energy costnoyesnonoyesnonono
Net-zero emissionnoyesnononoyesnoyes
Self-sufficiency (energy autonomous)nonoyesnonononono
Maximise self-sufficiencynoyesyesnoyesnoyesno
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseImplementation PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date10/2201/2410/1912/1811/2204/16
A1P007: End Date
A1P007: End date09/2512/2609/2412/2311/2504/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • TNO, Hanze, RUG,
      • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458832.79536924.08168339-7.90937715.39696.59065510.00711.424346738140256
      Y Coordinate (latitude):38.07734939.88181256.9524595638.57080448.275253.20408757.04102847.271470786729104
      A1P012: Country
      A1P012: CountryGreeceTurkeyLatviaPortugalAustriaNetherlandsDenmarkAustria
      A1P013: City
      A1P013: CityMunicipality of KifissiaAnkaraRigaÉvoraSchönbühel an der DonauGroningenAalborgInnsbruck
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCfbCsaDfbCfaDfbDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicFunctionalVirtualGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedPrivateMixedPublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED25715044
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]226001700004777.8622277
      A1P020: Total ground area
      A1P020: Total ground area [m²]50800119264245045.0933130800011351
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00100002
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononoyesyesnono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonononoyesyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnonono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnoyesnono
      A1P022i: Add the value in EUR if available [EUR]750000019998275
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononoyesyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Job creation,
      • Other
      A1P023: OtherCreate affordable appartments for the citizens
      A1P024: More comments:
      A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaProf. Dr. İpek Gürsel DİNOJudith StiekemaJoão Bravo DiasGhazal EtminanJasper Tonen, Elisabeth KoopsKristian OlesenGeorgios Dermentzis
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMiddle East Technical UniversityOASCEDP LabelecGhazal.Etminan@ait.ac.atMunicipality of GroningenAalborg UniversityUniversity of Innsbruck
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherSME / IndustryResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: Othernot for profit private organisation
      A1P029: Emailgiavasoglou@kifissia.gripekg@metu.edu.trjudith@oascities.orgjoao.bravodias@edp.ptGhazal.Etminan@ait.ac.atJasper.tonen@groningen.nlKristian@plan.aau.dkGeorgios.Dermentzis@uibk.ac.at
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorAssoc. Prof. Onur TaylanAlex Søgaard Moreno
      A1P031: Emailstavros.zapantis@gmail.comotaylan@metu.edu.trasm@aalborg.dk
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy modelingEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsStakeholder engagement, expert energy system analysis, future scenariosThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesNoNoNoNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Mobility, till now, is not included in the energy model.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.44680000.0661.862180.39
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.52850000.0121.451480.655
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnonoyesnonoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]3.42400.42
      A2P011: Windnonoyesnononoyesno
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonoyesnonononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononoyesno
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononononoyesnono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononononoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonoyesnonoyesnono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononoyesyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononoyesnono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Geothermal heatpump systems, Waste heat from data centersVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]3.9760.0796200.96
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.0011399-2
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesyesnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononoyesno
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononoyesnonono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]4
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
      A2P022: Education
      A2P022: Mobility
      A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and CommunitySpecify the associated KPIs
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesnoyesyesyesyesyes
      A2P023: Solar thermal collectorsnononoyesnoyesyesno
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnononononoyesnono
      A2P023: Waste heat recoverynononononoyesyesno
      A2P023: Waste to energynononononoyesyesno
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnononononononono
      A2P023: Heat Pumpnoyesnonoyesyesyesyes
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnonononononoyesno
      A2P023: Biogasnononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesnoyesnono
      A2P024: Energy management systemnonoyesyesyesyesyesno
      A2P024: Demand-side managementnonoyesnononoyesno
      A2P024: Smart electricity gridnonoyesyesnonoyesno
      A2P024: Thermal Storagenonoyesyesnoyesyesyes
      A2P024: Electric Storagenonoyesyesnoyesyesno
      A2P024: District Heating and Coolingnonoyesnonoyesyesyes
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesnoyesyesno
      A2P024: P2P – buildingsnononoyesyesnonoyes
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnonoyesnoyesno
      A2P025: Energy efficiency measures in historic buildingsnononoyesyesyesnono
      A2P025: High-performance new buildingsnononononoyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnono
      A2P025: Urban data platformsnonoyesyesnoyesnono
      A2P025: Mobile applications for citizensnonoyesyesnononono
      A2P025: Building services (HVAC & Lighting)noyesyesyesnononoyes
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnononoyesnononono
      A2P025: Smart surveillancenononoyesnonoyesno
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononononono
      A2P026: e-Mobilitynononoyesnoyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononono
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoNoNoYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateTwo buildings are certified "Passive House new build"
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Other
      A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionÇamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPED-ACT project.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaRurbanSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Preservation Area
      • Retrofitting Area,
      • Preservation Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction19862022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential16.931
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential780
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000000.068716412650868
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnonoyesnonono
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenonononoyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnonoyesnonoyes
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenonononoyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononononononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononononoyes
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononononononoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.An ongoing process and dialogue with local stakeholders to determine the future development of the area.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.Kristian Olesen
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • E-mobility,
      • Social interactions,
      • Circular economy models
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important4 - Important4 - Important3 - Moderately important2 - Slightly important
      C1P001: Decreasing costs of innovative materials4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important5 - Very important4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits4 - Important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important2 - Slightly important
      C1P001: Social acceptance (top-down)5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important5 - Very important5 - Very important2 - Slightly important2 - Slightly important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important
      C1P002: Energy autonomy/independence5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
      C1P003: Lack of public participation3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Non-effective regulations4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important4 - Important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1Urban area very high buildings (and apartment) density and thus, less available space for renewable sources.
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important
      C1P007: Deficient planning3 - Moderately important2 - Slightly important4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
      C1P009: Lack of awareness among authorities4 - Important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P010: Economic crisis5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Risk and uncertainty4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
      C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
      C1P011: Energy price distortion4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading
      C1P012: Urban Services providers
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Real Estate developers
      • Construction/implementation
      • Planning/leading
      • Construction/implementation
      • Planning/leading
      C1P012: Design/Construction companies
      • Construction/implementation
      • Planning/leading
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Design/demand aggregation
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Design/demand aggregation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)