Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Riga, Ķīpsala, RTU smart student city
Vantaa, Aviapolis
Ydalir project, Elverum
Tampere, Ilokkaanpuisto district
Innsbruck, Campagne-Areal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityRiga, Ķīpsala, RTU smart student cityVantaa, AviapolisYdalir project, ElverumTampere, Ilokkaanpuisto districtInnsbruck, Campagne-Areal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnono
PED relevant case studyyesnoyesnoyesyes
PED Lab.nonoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnononononono
Energy communityyesyesnonoyesno
Circularitynonoyesnonono
Air quality and urban comfortyesnonononono
Electrificationyesnononoyesno
Net-zero energy costnononononono
Net-zero emissionnononoyesyesyes
Self-sufficiency (energy autonomous)noyesnonoyesno
Maximise self-sufficiencynoyesnononono
Othernononoyesnono
Other (A1P004)Energy efficient; Sustainable neighbourhood; Energy neutral
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationCompletedCompleted
A1P006: Start Date
A1P006: Start date01/2401/2301/1604/1404/16
A1P007: End Date
A1P007: End date12/2612/2710/2304/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • None yet, but coming
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458824.0816833924.95882111.58020423.79808311.424346738140256
    Y Coordinate (latitude):38.07734956.9524595660.30548860.89187861.46408847.271470786729104
    A1P012: Country
    A1P012: CountryGreeceLatviaFinlandNorwayFinlandAustria
    A1P013: City
    A1P013: CityMunicipality of KifissiaRigaVantaaElverumTampereInnsbruck
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDfbDfbDfbDfb
    A1P015: District boundary
    A1P015: District boundaryVirtualGeographicGeographicVirtualGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PublicMixedPublicMixedMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1564
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1700009.00022277
    A1P020: Total ground area
    A1P020: Total ground area [m²]119264388100043000025.00011351
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area010002
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonoyesnoyesno
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnonononoyesno
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnoyesno
    A1P022i: Add the value in EUR if available [EUR]7500000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyes
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Boosting local and sustainable production
    • Job creation,
    • Other
    A1P023: OtherCreate affordable appartments for the citizens
    A1P024: More comments:
    A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJudith StiekemaEira LinkoChristoph GollnerSenior Scientist Terttu VainioGeorgios Dermentzis
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamOASCCity of VantaaFFGVTT Technical Research Centre of FinlandUniversity of Innsbruck
    A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / University
    A1P028: Othernot for profit private organisation
    A1P029: Emailgiavasoglou@kifissia.grjudith@oascities.orgeira.linko@vantaa.fichristoph.gollner@ffg.atterttu.vainio@vtt.fiGeorgios.Dermentzis@uibk.ac.at
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayor
    A1P031: Emailstavros.zapantis@gmail.com
    Pursuant to the General Data Protection RegulationYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy production,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Digital technologies
    • Energy efficiency,
    • Energy production,
    • Indoor air quality
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceYesNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]800000.39
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50000.70.655
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnoyesnoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.42
    A2P011: Windnoyesnononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnoyesnononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonoyesnoyesno
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnoyesnononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnonoyesnonono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.PV plant of energy community locates outside of the city, not on the slot
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.70.96
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]-2
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnoyesnononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnonono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonoyesnonono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononoyesnonono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonoyesnonono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonoyesnonono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonoyesnonono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]0
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
    A2P022: Education
    A2P022: MobilityMode of transport; Access to public transport
    A2P022: EnergyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and CommunityDelivery and proximity to amenities
    A2P022: Waste
    A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnonoyesnoyesyes
    A2P023: Solar thermal collectorsnononoyesnono
    A2P023: Wind Turbinesnononononono
    A2P023: Geothermal energy systemnonoyesnoyesno
    A2P023: Waste heat recoverynonoyesnoyesno
    A2P023: Waste to energynonoyesnonono
    A2P023: Polygenerationnonoyesnonono
    A2P023: Co-generationnononononono
    A2P023: Heat Pumpnonoyesnoyesyes
    A2P023: Hydrogennononononono
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnonoyesnonono
    A2P023: Biogasnononononono
    A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesno
    A2P024: Energy management systemnoyesyesnoyesno
    A2P024: Demand-side managementnoyesyesnoyesno
    A2P024: Smart electricity gridnoyesyesnonono
    A2P024: Thermal Storagenoyesyesnonoyes
    A2P024: Electric Storagenoyesyesnonono
    A2P024: District Heating and Coolingnoyesyesyesnoyes
    A2P024: Smart metering and demand-responsive control systemsnoyesyesnoyesno
    A2P024: P2P – buildingsnononononoyes
    A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.Electric grid as virtual battery
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnononononono
    A2P025: Energy efficiency measures in historic buildingsnononononono
    A2P025: High-performance new buildingsnonoyesnoyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)nononononono
    A2P025: Urban data platformsnoyesnononono
    A2P025: Mobile applications for citizensnoyesnonoyesno
    A2P025: Building services (HVAC & Lighting)noyesyesnoyesyes
    A2P025: Smart irrigationnononononono
    A2P025: Digital tracking for waste disposalnononononono
    A2P025: Smart surveillancenononononono
    A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonoyesnonono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesyesnono
    A2P026: e-Mobilitynonoyesnonono
    A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
    A2P026: Car-free areanononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoYesYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Other
    A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviour
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Open data business models,
    • Innovative business models,
    • Demand management Living Lab
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Open data business models,
    • Circular economy models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Digital twinning and visual 3D models
    • Strategic urban planning,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Net zero carbon footprint,
    • Carbon-free
    • Energy Neutral,
    • Net zero carbon footprint,
    • Carbon-free,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspects
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction,
    • Renovation
    • New construction
    • New construction
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Re-use / Transformation Area,
    • New Development
    • New Development
    • New Development
    • Re-use / Transformation Area,
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction2022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential0
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential300780
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0000120.068716412650868
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonoyesnonono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenonoyesnonono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynonoyesnonono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonoyesnonono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonoyesnonono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonononoyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonoyesnonono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonoyesnonono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesyesyesyes
    B1P014 - Residential: Specify the sqm [m²]100000
    B1P014: Officenonoyesnonono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonoyesnonono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonoyesnonoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesyesnoyes
    B1P014 - Institutional: Specify the sqm [m²]2000
    B1P014: Natural areasnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonoyesnonoyes
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Environmental,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P001: Decreasing costs of innovative materials4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
    C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
    C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P002: Territorial and market attractiveness2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
    C1P002: Energy autonomy/independence5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important
    C1P002: Any other DRIVING FACTOR3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: Lack of public participation3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P003: Any other Administrative BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Non-effective regulations4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
    C1P006: Environmental barriers
    C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P008: Any other Social BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P009: Lack of awareness among authorities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P009: Any other Information and Awareness BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P010: Economic crisis3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important
    C1P010: Risk and uncertainty3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P010: Any other Financial BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Energy price distortion5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
    C1P011: Any other Market BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading
    • Planning/leading
    • Planning/leading
    • Planning/leading
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Business process management
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation
    C1P012: Urban Services providers
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Real Estate developers
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation
    • Planning/leading
    C1P012: Design/Construction companies
    • Construction/implementation
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Social/Civil Society/NGOs
    • Design/demand aggregation
    • None
    • Planning/leading
    C1P012: Industry/SME/eCommerce
    • Construction/implementation
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)