Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Freiburg, Waldsee
Innsbruck, Campagne-Areal
Maia, Sobreiro Social Housing
Kladno, Sletiště (Sport Area), PED Winter Stadium
Ankara, Çamlık District
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityFreiburg, WaldseeInnsbruck, Campagne-ArealMaia, Sobreiro Social HousingKladno, Sletiště (Sport Area), PED Winter StadiumAnkara, Çamlık District
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyes
PED relevant case studyyesnoyesnoyesyes
PED Lab.nononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnonononoyesyes
Energy communityyesyesnonoyesyes
Circularitynononononono
Air quality and urban comfortyesnonononono
Electrificationyesyesnonoyesyes
Net-zero energy costnononononoyes
Net-zero emissionnoyesyesnonoyes
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynononoyesnoyes
Othernononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedPlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date11/2104/1610/21202210/22
A1P007: End Date
A1P007: End date11/2404/2210/2409/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.8145887.88585713584291711.424346738140256-8.37355714.0929632.795369
      Y Coordinate (latitude):38.07734947.98653520708004547.27147078672910441.13580450.1371539.881812
      A1P012: Country
      A1P012: CountryGreeceGermanyAustriaPortugalCzech RepublicTurkey
      A1P013: City
      A1P013: CityMunicipality of KifissiaFreiburg im BreisgauInnsbruckMaiaKladnoAnkara
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDfbCsbCfbDsb
      A1P015: District boundary
      A1P015: District boundaryVirtualVirtualGeographicVirtualGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED29414228257
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]2840702227722600
      A1P020: Total ground area
      A1P020: Total ground area [m²]49200001135150800
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area002000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononoyesno
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononoyesno
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesno
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononoyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyesyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnoyesyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Other
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities
      • Boosting local and sustainable production
      A1P023: OtherCreate affordable appartments for the citizens
      A1P024: More comments:
      A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Annette SteingrubeGeorgios DermentzisAdelina RodriguesDavid ŠkorňaProf. Dr. İpek Gürsel DİNO
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFraunhofer Institute for solar energy systemsUniversity of InnsbruckMaia Municipality (CM Maia) – Energy and Mobility divisionMěsto KladnoMiddle East Technical University
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / University
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.grAnnette.Steingrube@ise.fraunhofer.deGeorgios.Dermentzis@uibk.ac.atdscm.adelina@cm-maia.ptdavid.skorna@mestokladno.czipekg@metu.edu.tr
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Michal KuzmičAssoc. Prof. Onur Taylan
      A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.eumichal.kuzmic@cvut.czotaylan@metu.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy production,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy system modelingThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Trnsys, PV modelling tools, CADThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesNoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityNot yet included.Mobility is not included in the calculations.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]135.7150.391.43.446
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.760.6550.30.528
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnoyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.421.13.4240
      A2P011: Windnononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
      A2P012: Biomass_peat_heatnononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownWaste heat from cooling the ice rink.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]132.50.962.13.976
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]-2
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyes
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-104
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
      A2P022: Education
      A2P022: Mobilityyes
      A2P022: EnergyyesSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance
      A2P022: Water
      A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
      A2P022: Housing and Communityyes
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyes
      A2P023: Solar thermal collectorsnoyesnoyesnono
      A2P023: Wind Turbinesnononononono
      A2P023: Geothermal energy systemnoyesnononono
      A2P023: Waste heat recoverynoyesnonoyesno
      A2P023: Waste to energynoyesnononono
      A2P023: Polygenerationnononononono
      A2P023: Co-generationnoyesnononono
      A2P023: Heat Pumpnoyesyesyesyesyes
      A2P023: Hydrogennoyesnononono
      A2P023: Hydropower plantnoyesnononono
      A2P023: Biomassnoyesnononono
      A2P023: Biogasnoyesnononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesno
      A2P024: Energy management systemnoyesnoyesyesno
      A2P024: Demand-side managementnoyesnonoyesno
      A2P024: Smart electricity gridnoyesnononono
      A2P024: Thermal Storagenoyesyesnonono
      A2P024: Electric Storagenoyesnoyesnono
      A2P024: District Heating and Coolingnoyesyesnoyesno
      A2P024: Smart metering and demand-responsive control systemsnoyesnoyesyesno
      A2P024: P2P – buildingsnoyesyesnonono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnoyesyesyes
      A2P025: Energy efficiency measures in historic buildingsnoyesnononono
      A2P025: High-performance new buildingsnonoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnono
      A2P025: Urban data platformsnoyesnonoyesno
      A2P025: Mobile applications for citizensnononononono
      A2P025: Building services (HVAC & Lighting)nonoyesyesyesyes
      A2P025: Smart irrigationnononononono
      A2P025: Digital tracking for waste disposalnononoyesnono
      A2P025: Smart surveillancenononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononono
      A2P026: e-Mobilitynoyesnoyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononono
      A2P026: Car-free areanononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesYesYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"The Municipal Buildings have an energy certificate, according to the Portuguese legislation.National standards apply.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies
      • Smart cities strategies
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035Carbon neutrality 2050
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Other
      • Other
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps
      A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Onsite Energy Ratio > 1Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Strategic, economicPED-ACT project.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • New construction,
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20221986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential5898
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential5898780
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.00119878048780490.068716412650868000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnonoyesyes
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenoyesnonoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynoyesnononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnoyesnononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnoyesnononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnoyesnonoyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesnoyesyes
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenoyesnonoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynoyesnononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnoyesyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesyesnonono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnoyesnononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesyesnoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life timePermanent installation
      B2P003: Scale of action
      B2P003: ScaleVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: OtherEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important3 - Moderately important2 - Slightly important4 - Important4 - Important2 - Slightly important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important3 - Moderately important4 - Important3 - Moderately important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important
      C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important4 - Important2 - Slightly important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important3 - Moderately important4 - Important2 - Slightly important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important4 - Important5 - Very important4 - Important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important
      C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important4 - Important4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important3 - Moderately important4 - Important4 - Important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important
      C1P002: Urban re-development of existing built environment3 - Moderately important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important5 - Very important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
      C1P002: Energy autonomy/independence5 - Very important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important2 - Slightly important5 - Very important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
      C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P007: Lack of well-defined process4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
      C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P010: Economic crisis3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important
      C1P010: Risk and uncertainty4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P011: Energy price distortion3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • None
      • Planning/leading,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • None
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      C1P012: Urban Services providers
      • None
      • Construction/implementation
      • Design/demand aggregation
      C1P012: Real Estate developers
      • None
      • Planning/leading
      • Design/demand aggregation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Industry/SME/eCommerce
      • None
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)