Filters:
NameProjectTypeCompare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Freiburg, Waldsee
Tampere, Ilokkaanpuisto district
Innsbruck, Campagne-Areal
Leipzig, Baumwollspinnerei district
Trondheim, Svartlamon
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityFreiburg, WaldseeTampere, Ilokkaanpuisto districtInnsbruck, Campagne-ArealLeipzig, Baumwollspinnerei districtTrondheim, Svartlamon
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesno
PED relevant case studyyesnoyesyesnono
PED Lab.nononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnononononono
Energy communityyesyesyesnonoyes
Circularitynononononono
Air quality and urban comfortyesnononoyesno
Electrificationyesyesyesnoyesno
Net-zero energy costnononononono
Net-zero emissionnoyesyesyesnono
Self-sufficiency (energy autonomous)nonoyesnonono
Maximise self-sufficiencynononononono
Othernonononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedCompletedImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date11/2104/1404/1611/24
A1P007: End Date
A1P007: End date11/2410/2304/2203/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
    • None yet, but coming
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145887.88585713584291723.79808311.42434673814025612.31845810.42
        Y Coordinate (latitude):38.07734947.98653520708004561.46408847.27147078672910451.32649263.4363
        A1P012: Country
        A1P012: CountryGreeceGermanyFinlandAustriaGermanyNorway
        A1P013: City
        A1P013: CityMunicipality of KifissiaFreiburg im BreisgauTampereInnsbruckLeipzigTrondheim
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDfbDfbDfbCfb
        A1P015: District boundary
        A1P015: District boundaryVirtualVirtualVirtualGeographicFunctionalVirtual
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED2941642
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]2840709.0002227717000
        A1P020: Total ground area
        A1P020: Total ground area [m²]492000025.00011351300003200
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000210
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnonono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonoyesnonono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnonono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnoyesnono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production
        • Job creation,
        • Other
        A1P023: OtherCreate affordable appartments for the citizensSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]0.02
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Annette SteingrubeSenior Scientist Terttu VainioGeorgios DermentzisSimon BaumTatiana González Grandón; Raymundo E. Torres-Olguin
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFraunhofer Institute for solar energy systemsVTT Technical Research Centre of FinlandUniversity of InnsbruckCENERO Energy GmbHNTNU
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailgiavasoglou@kifissia.grAnnette.Steingrube@ise.fraunhofer.deterttu.vainio@vtt.fiGeorgios.Dermentzis@uibk.ac.atsib@cenero.detatiana.c.g.grandon@ntnu.no
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSimon BaumRaymundo E. Torres-Olguin
        A1P031: Emailstavros.zapantis@gmail.comsib@cenero.deraymundo.torres-olguin@sintef.no
        Pursuant to the General Data Protection RegulationYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy flexibility,
        • Digital technologies
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy system modelingEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]135.71500.391.6514
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.760.70.65590
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]000
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]9
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.42
        A2P011: Windnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonoyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownPV plant of energy community locates outside of the city, not on the slot
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]132.50.70.962.421
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]-2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
        A2P022: Education
        A2P022: Mobilityyes
        A2P022: EnergyyesSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.applyYes
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Communityyes
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesnoyes
        A2P023: Solar thermal collectorsnoyesnonoyesno
        A2P023: Wind Turbinesnononononono
        A2P023: Geothermal energy systemnoyesyesnonono
        A2P023: Waste heat recoverynoyesyesnonono
        A2P023: Waste to energynoyesnononono
        A2P023: Polygenerationnononononono
        A2P023: Co-generationnoyesnononono
        A2P023: Heat Pumpnoyesyesyesyesno
        A2P023: Hydrogennoyesnononono
        A2P023: Hydropower plantnoyesnononono
        A2P023: Biomassnoyesnononono
        A2P023: Biogasnoyesnononono
        A2P023: OtherBatteries
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnonoyes
        A2P024: Energy management systemnoyesyesnonoyes
        A2P024: Demand-side managementnoyesyesnonono
        A2P024: Smart electricity gridnoyesnononono
        A2P024: Thermal Storagenoyesnoyesnono
        A2P024: Electric Storagenoyesnononono
        A2P024: District Heating and Coolingnoyesnoyesnono
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnonono
        A2P024: P2P – buildingsnoyesnoyesnoyes
        A2P024: OtherElectric grid as virtual battery
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnononono
        A2P025: Energy efficiency measures in historic buildingsnoyesnononono
        A2P025: High-performance new buildingsnonoyesyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyes
        A2P025: Urban data platformsnoyesnononoyes
        A2P025: Mobile applications for citizensnonoyesnonono
        A2P025: Building services (HVAC & Lighting)nonoyesyesnono
        A2P025: Smart irrigationnononononono
        A2P025: Digital tracking for waste disposalnononononono
        A2P025: Smart surveillancenonononoyesno
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnonoyesno
        A2P026: e-Mobilitynoyesnonoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononono
        A2P026: Car-free areanononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Biogas
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • Open data business models,
        • Circular economy models
        • Innovative business models,
        • Other
        • Local trading,
        • Existing incentives
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone
        • Other
        • Low Emission Zone
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaSuburban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • Preservation Area
        B1P006: Year of construction
        B1P006: Year of construction2022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential58980
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential5898300780
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.0011987804878049120.06871641265086800
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenoyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynoyesnononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnoyesnononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnoyesyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnoyesnononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesyesyesnono
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenoyesnononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynoyesnononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnoyesnono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnoyesnoyesnono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnoyesnononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnoyesnoyesnono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important
        C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important2 - Slightly important4 - Important
        C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important4 - Important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important3 - Moderately important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important4 - Important2 - Slightly important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important3 - Moderately important4 - Important2 - Slightly important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important4 - Important4 - Important4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important3 - Moderately important4 - Important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important5 - Very important5 - Very important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important
        C1P002: Energy autonomy/independence5 - Very important3 - Moderately important4 - Important4 - Important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important2 - Slightly important5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Lack of well-defined process4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Rebound effect4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important4 - Important1 - Unimportant5 - Very important
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P010: Economic crisis3 - Moderately important4 - Important4 - Important3 - Moderately important
        C1P010: Risk and uncertainty4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy price distortion3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading
        • Planning/leading
        C1P012: Research & Innovation
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • None
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • None
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • None
        • Planning/leading,
        • Construction/implementation
        C1P012: Urban Services providers
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Real Estate developers
        • None
        • Planning/leading,
        • Construction/implementation
        • Planning/leading
        C1P012: Design/Construction companies
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading
        C1P012: Industry/SME/eCommerce
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)