Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Graz, Reininghausgründe
Bærum, Eiksveien 116
Halmstad, Fyllinge
Borlänge, Rymdgatan’s Residential Portfolio
Amsterdam, Buiksloterham PED
Vantaa, Aviapolis
Leipzig, Baumwollspinnerei district
Ankara, Çamlık District
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityGraz, ReininghausgründeBærum, Eiksveien 116Halmstad, FyllingeBorlänge, Rymdgatan’s Residential PortfolioAmsterdam, Buiksloterham PEDVantaa, AviapolisLeipzig, Baumwollspinnerei districtAnkara, Çamlık District
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesyesyesyes
PED relevant case studyyesnoyesyesyesnoyesnoyes
PED Lab.nonononononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyesyesyesyesyes
Annual energy surplusnonononoyesyesnonoyes
Energy communityyesnonoyesyesyesnonoyes
Circularitynononononoyesyesnono
Air quality and urban comfortyesnonononononoyesno
Electrificationyesnoyesnoyesyesnoyesyes
Net-zero energy costnonoyesnononononoyes
Net-zero emissionnonoyesnonoyesnonoyes
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynonononoyesnononoyes
Othernononononononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseCompletedPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date201901/1801/2111/1901/2310/22
A1P007: End Date
A1P007: End date202506/2301/3010/2512/2709/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • GIS open datasets
  • Meteorological open data
  • General statistical datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458815.40744010.533312.9205415.3944954.904124.95882112.31845832.795369
            Y Coordinate (latitude):38.07734947.060759.910056.6519460.48660952.367660.30548851.32649239.881812
            A1P012: Country
            A1P012: CountryGreeceAustriaNorwaySwedenSwedenNetherlandsFinlandGermanyTurkey
            A1P013: City
            A1P013: CityMunicipality of KifissiaGrazBærumHalmstadBorlängeAmsterdamVantaaLeipzigAnkara
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaDfbDfbDwbDsbCfbDfbDfbDsb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicOtherGeographicGeographicFunctionalGeographicFunctionalGeographic
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodBuildingGeographic
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedMixedMixedPrivate
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED100125010602257
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]3700285001700022600
            A1P020: Total ground area
            A1P020: Total ground area [m²]1000000994538810003000050800
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area000000010
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenoyesnoyesnoyesyesnono
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernonononononoyesnono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnoyesnonononononono
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesnononoyesnono
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernonononononononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnoyesyesnoyes
            A1P022i: Add the value in EUR if available [EUR]
            A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononoyes
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Job creation,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            • Other
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities,
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Boosting local and sustainable production
            A1P023: OtherSocial housingSustainable and replicable business models regarding renewable energy systems
            A1P024: More comments:
            A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaKatharina SchwarzJohn Einar ThommesenMarkus OlofsgårdJingchun ShenOmar ShafqatEira LinkoSimon BaumProf. Dr. İpek Gürsel DİNO
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamStadtLABOR, Innovationen für urbane Lebensqualität GmbHSINTEF CommunityAFRYHögskolan DalarnaAmsterdam University of Applied SciencesCity of VantaaCENERO Energy GmbHMiddle East Technical University
            A1P028: AffiliationMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / University
            A1P028: OtherCENERO Energy GmbH
            A1P029: Emailgiavasoglou@kifissia.grkatharina.schwarz@stadtlaborgraz.atjohn.thommesen@sintef.nomarkus.olofsgard@afry.comjih@du.seo.shafqat@hva.nleira.linko@vantaa.fisib@cenero.deipekg@metu.edu.tr
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorHans SchnitzerJohn Einar ThommesenXingxing ZhangOmar ShafqatSimon BaumAssoc. Prof. Onur Taylan
            A1P031: Emailstavros.zapantis@gmail.comhans.schnitzer@stadtlaborgraz.atjohn.thommesen@sintef.noxza@du.seo.shafqat@hva.nlsib@cenero.deotaylan@metu.edu.tr
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Water use,
            • Indoor air quality,
            • Other
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Water use,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Construction materials,
            • Other
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy production,
            • Construction materials
            A2P001: OtherUrban Management; Air Quality
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtlink based regulation of electricity gridLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMCity vision, Innovation AteliersPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoNoYesNoYes
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceYesYesNoNoNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Mobility is not included in the calculations.
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.67771.653.446
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.036560.528
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]00
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesnoyesnoyesyesyesyes
            A2P011: PV - specify production in GWh/annum [GWh/annum]3.4240
            A2P011: Windnonononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydrononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnononononoyesnonono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnonononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnonononoyesnononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
            A2P011: Othernonononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnoyesnoyesnoyesyesnono
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnoyesnonononononono
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnononononoyesnonono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnoyesnononoyesyesnono
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnonononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnonononoyesnononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
            A2P012: Biomass_firewood_thnonononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesGroundwater (used for heat pumps)
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]0.3182.4213.976
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]0.2055
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnononononoyesnonoyes
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnononononoyesnonono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnononononoyesnonono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernonononoyesnononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnoyesnononoyesyesnono
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
            A2P018: Windnoyesnononoyesyesnono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydronoyesnononoyesyesnono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnononononoyesyesnono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnononononoyesnonono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnononononoyesnonono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernonononoyesnononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnononononoyesnonono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnoyesnononoyesnonono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnoyesnononoyesyesnono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnoyesnononoyesyesnono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnononononoyesnonono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnononononoyesnonono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnononononoyesnonono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernonononoyesnononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary00000.538395721925130000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]0.0366.93250
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Securitynone
            A2P022: Healththermal comfort diagram
            A2P022: Educationnone
            A2P022: Mobilityxnone
            A2P022: Energyxnormalized CO2/GHG & Energy intensityapply
            A2P022: Waterx
            A2P022: Economic developmentxcost of excess emissions
            A2P022: Housing and Communityx
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesnoyesyesyesyesnoyes
            A2P023: Solar thermal collectorsnonononoyesnononono
            A2P023: Wind Turbinesnonononononononono
            A2P023: Geothermal energy systemnonononoyesyesyesnono
            A2P023: Waste heat recoverynoyesnonoyesyesyesnono
            A2P023: Waste to energynononononoyesyesnono
            A2P023: Polygenerationnonononononoyesnono
            A2P023: Co-generationnonononononononono
            A2P023: Heat Pumpnoyesnonoyesyesyesnoyes
            A2P023: Hydrogennonononononononono
            A2P023: Hydropower plantnonononononononono
            A2P023: Biomassnononononoyesyesnono
            A2P023: Biogasnononononoyesnonono
            A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesyesnono
            A2P024: Energy management systemnononononoyesyesnono
            A2P024: Demand-side managementnononoyesnoyesyesnono
            A2P024: Smart electricity gridnononoyesnoyesyesnono
            A2P024: Thermal Storagenoyesnonoyesyesyesnono
            A2P024: Electric Storagenononononoyesyesnono
            A2P024: District Heating and Coolingnoyesnonoyesyesyesnono
            A2P024: Smart metering and demand-responsive control systemsnononoyesnoyesyesnono
            A2P024: P2P – buildingsnononononoyesnonono
            A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnonononoyesyesnonoyes
            A2P025: Energy efficiency measures in historic buildingsnononononoyesnonono
            A2P025: High-performance new buildingsnoyesnononoyesyesnono
            A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononoyesnonono
            A2P025: Urban data platformsnononononoyesnonono
            A2P025: Mobile applications for citizensnoyesnononoyesnonono
            A2P025: Building services (HVAC & Lighting)nonononoyesyesyesnoyes
            A2P025: Smart irrigationnoyesnononoyesnonono
            A2P025: Digital tracking for waste disposalnononononoyesnonono
            A2P025: Smart surveillancenonononononononono
            A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesyesnono
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyesyesnono
            A2P026: e-Mobilitynoyesnononoyesyesnono
            A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononoyesyesnono
            A2P026: Car-free areanoyesnononoyesnonono
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementTest-Concept for bidirectional charging.
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesYesNoNoYesNo
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergieausweis mandatory if buildings/ flats/ apartments are sold
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesYesNoNoNo
            A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC)
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas,
            • Hydrogen
            • Biogas
            • Electrification of Heating System based on Heat Pumps
            A3P003: Other
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesNursing home for people with special needsIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • PPP models,
            • Local trading
            • Local trading
            • Open data business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Local trading
            • Innovative business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • Innovative business models,
            • PPP models,
            • Life Cycle Cost,
            • Circular economy models
            • Innovative business models,
            • Other
            A3P006: Otheroperational savings through efficiency measures
            A3P007: Social models
            A3P007: Social models
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Affordability,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Behavioural Change / End-users engagement,
            • Citizen/owner involvement in planning and maintenance
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Affordability,
            • Digital Inclusion
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Social incentives,
            • Quality of Life,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Policy Forums,
            • Quality of Life,
            • Strategies towards social mix,
            • Affordability,
            • Prevention of energy poverty,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Behavioural Change / End-users engagement
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Affordability
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning,
            • City Vision 2050,
            • Building / district Certification
            • Strategic urban planning
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • Building / district Certification
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • SECAP Updates
            • Digital twinning and visual 3D models,
            • District Energy plans
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Pollutants Reduction,
            • Greening strategies,
            • Sustainable Urban drainage systems (SUDS),
            • Nature Based Solutions (NBS)
            • Other
            • Energy Neutral,
            • Carbon-free
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Sustainable Urban drainage systems (SUDS)
            • Energy Neutral,
            • Life Cycle approach
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Greening strategies,
            • Nature Based Solutions (NBS)
            • Other
            • Energy Neutral,
            • Low Emission Zone
            A3P009: OtherPEBPositive Energy Balance for the demo siteEnergy Positive, Low Emission Zone
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.Regulatory sandbox
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.PEBThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Functional PEDNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Borlänge city has committed to become the carbon-neutral city by 2030.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.PED-ACT project.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaUrban areaUrban areaSuburban area
            B1P004: Type of district
            B2P004: Type of district
            • New construction
            • New construction
            • New construction
            • Renovation
            • New construction
            • New construction,
            • Renovation
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • New Development
            • New Development
            • New Development
            • Re-use / Transformation Area,
            • Retrofitting Area
            • New Development
            • Re-use / Transformation Area,
            • New Development
            • Preservation Area
            • Retrofitting Area
            B1P006: Year of construction
            B1P006: Year of construction202519901986
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential0100
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential10000100
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential06
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential6
            B1P011: Population density before intervention
            B1P011: Population density before intervention000000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention00.01000.0106586224233280000
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnonononoyesnoyesnoyes
            B1P013 - Residential: Specify the sqm [m²]436050800
            B1P013: Officenonononononoyesnono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynoyesnononoyesyesnono
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnonononononoyesnono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnonononononoyesnono
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnoyesnoyesnonononono
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononoyesnono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononoyesnono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernonononoyesnononono
            B1P013 - Other: Specify the sqm [m²]706
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnoyesnonoyesyesyesnoyes
            B1P014 - Residential: Specify the sqm [m²]436050800
            B1P014: Officenoyesnononoyesyesnono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononoyesnono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnoyesnononoyesyesnono
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnoyesnonononoyesnono
            B1P014 - Institutional: Specify the sqm [m²]
            B1P014: Natural areasnoyesnonononononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnoyesnononoyesyesnono
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernonononoyesnononono
            B1P014 - Other: Specify the sqm [m²]706
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
            B2P002: Installation life time
            B2P002: Installation life time
            B2P003: Scale of action
            B2P003: ScaleDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO
            B2P009: Other
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholders
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important2 - Slightly important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
            C1P001: Storage systems and E-mobility market penetration2 - Slightly important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
            C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important
            C1P001: The ability to predict Multiple Benefits4 - Important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important4 - Important4 - Important
            C1P001: The ability to predict the distribution of benefits and impacts4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important
            C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important2 - Slightly important5 - Very important4 - Important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important4 - Important4 - Important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
            C1P001: Availability of RES on site (Local RES)3 - Moderately important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important5 - Very important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important4 - Important
            C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
            C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important
            C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
            C1P002: Energy autonomy/independence5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
            C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
            C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important5 - Very important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important
            C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important5 - Very important
            C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important5 - Very important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important5 - Very important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
            C1P005: Insufficient or insecure financial incentives4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important
            C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers2 - Slightly important- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
            C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important
            C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
            C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
            C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
            C1P008: Rebound effect4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
            C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important3 - Moderately important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
            C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
            C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important2 - Slightly important5 - Very important
            C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important
            C1P010: Insufficient external financial support and funding for project activities2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
            C1P010: Economic crisis4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
            C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important4 - Important
            C1P010: Lack of consolidated and tested business models2 - Slightly important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
            C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important
            C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Research & Innovation
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Financial/Funding
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Analyst, ICT and Big Data
            • Planning/leading,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • None
            • Construction/implementation
            • Design/demand aggregation
            C1P012: Business process management
            • None
            • Design/demand aggregation
            • None
            C1P012: Urban Services providers
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • None
            C1P012: Real Estate developers
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • Design/demand aggregation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Design/Construction companies
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            • Design/demand aggregation
            • None
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Design/demand aggregation
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Design/demand aggregation
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • Monitoring/operation/management
            C1P012: Industry/SME/eCommerce
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • None
            • Construction/implementation
            • Construction/implementation
            C1P012: Other
            • None
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)