Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Uncompare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Stor-Elvdal, Campus Evenstad
Lund, Brunnshög district
Uden, Loopkantstraat
Trento, STARDUST
Espoo, Kera
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityStor-Elvdal, Campus EvenstadLund, Brunnshög districtUden, LoopkantstraatTrento, STARDUSTEspoo, Kera
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnonoyes
PED relevant case studyyesyesnoyesyesyes
PED Lab.nonononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnoyesyesyesnono
Energy communityyesnoyesnonono
Circularitynonoyesnonoyes
Air quality and urban comfortyesnoyesnonono
Electrificationyesnoyesyesnono
Net-zero energy costnononononono
Net-zero emissionnonoyesnonono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynononononono
Othernoyesyesnoyesno
Other (A1P004)Energy-flexibilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;Energy neutral; Energy efficient; Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationIn operationCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date01/13201506/1710/1701/15
A1P007: End Date
A1P007: End date12/24204005/2303/2412/35
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458811.07877077353174613.2324694007695995.619111.13414824.75377778
    Y Coordinate (latitude):38.07734961.4260442039911255.7198979220719351.660646.04116060.21622222
    A1P012: Country
    A1P012: CountryGreeceNorwaySwedenNetherlandsItalyFinland
    A1P013: City
    A1P013: CityMunicipality of KifissiaEvenstad, Stor-Elvdal municipalityLundUdenTrentoEspoo
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaDwcDfbCfbCfbDfb
    A1P015: District boundary
    A1P015: District boundaryVirtualGeographicGeographicGeographicGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PublicPublicPrivateMixedMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED222001
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1000015000002360
    A1P020: Total ground area
    A1P020: Total ground area [m²]15000003860580000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area001100
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesyesnono
    A1P022a: Add the value in EUR if available [EUR]999999997804440
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnoyesno
    A1P022d: Add the value in EUR if available [EUR]1000000
    A1P022e: Financing - PUBLIC - National fundingnoyesyesnonono
    A1P022e: Add the value in EUR if available [EUR]30000000
    A1P022f: Financing - PUBLIC - Regional fundingnonoyesnonono
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonono
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnonono
    A1P022i: Add the value in EUR if available [EUR]2000000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononoyesno
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherGreen financingMultiple different funding schemes depending on the case.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Other
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    A1P023: OtherWorld class sustainable living and research environmentsCircular economy
    A1P024: More comments:
    A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaÅse Lekang SørensenMarkus PaulssonTonje Healey TrulsrudChristoph GollnerJoni Mäkinen
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesCity of LundNorwegian University of Science and Technology (NTNU)FFGCity of Espoo
    A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherMunicipality / Public Bodies
    A1P028: Other
    A1P029: Emailgiavasoglou@kifissia.grase.sorensen@sintef.nomarkus.paulsson@lund.setonje.h.trulsrud@ntnu.nochristoph.gollner@ffg.atjoni.makinen@espoo.fi
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayorEva Dalman
    A1P031: Emailstavros.zapantis@gmail.comeva.dalman@lund.se
    Pursuant to the General Data Protection RegulationYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Construction materials
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesNoNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceYesYesNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.not included
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.77250.14854.5
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.76300.10919.4
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.0584
    A2P011: Windnonoyesnonono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnoyesnononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnononoyesnono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnoyesnononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
    A2P012: Biomass_heatnoyesnononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
    A2P012: Waste heat+HPnonoyesnonoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.*Annual energy use below is presentedin primary energy consumptionLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]1.5000.19478.8
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]10.036815.4
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnonono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonoyesnonono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononoyesnonono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonoyesnonono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043450000
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecurityPersonal Safety
    A2P022: HealthHealthy community
    A2P022: Education
    A2P022: MobilityMaximum 1/3 transport with carSustainable mobility
    A2P022: EnergyLocal energy production 150% of energy needNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
    A2P022: Water
    A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
    A2P022: Housing and Community50% rental apartments and 50% owner apartmentsdemographic composition, diverse community, social cohesion
    A2P022: Waste
    A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnoyesyesyesyesyes
    A2P023: Solar thermal collectorsnoyesyesnoyesno
    A2P023: Wind Turbinesnonoyesnonono
    A2P023: Geothermal energy systemnonoyesyesyesno
    A2P023: Waste heat recoverynonoyesnoyesyes
    A2P023: Waste to energynononononono
    A2P023: Polygenerationnonoyesnonono
    A2P023: Co-generationnoyesnononono
    A2P023: Heat Pumpnonoyesyesyesyes
    A2P023: Hydrogennonoyesnonono
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnoyesnononono
    A2P023: Biogasnononononono
    A2P023: OtherThe Co-generation is biomass based.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesyes
    A2P024: Energy management systemnoyesyesyesnoyes
    A2P024: Demand-side managementnoyesyesyesnoyes
    A2P024: Smart electricity gridnonoyesnoyesyes
    A2P024: Thermal Storagenoyesyesnonono
    A2P024: Electric Storagenoyesyesnonono
    A2P024: District Heating and Coolingnoyesyesnoyesyes
    A2P024: Smart metering and demand-responsive control systemsnoyesyesyesyesno
    A2P024: P2P – buildingsnononononono
    A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnononononono
    A2P025: Energy efficiency measures in historic buildingsnononononono
    A2P025: High-performance new buildingsnoyesyesyesnoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnoyesyes
    A2P025: Urban data platformsnonoyesnonoyes
    A2P025: Mobile applications for citizensnononononono
    A2P025: Building services (HVAC & Lighting)nonoyesyesnoyes
    A2P025: Smart irrigationnononononono
    A2P025: Digital tracking for waste disposalnonoyesnonono
    A2P025: Smart surveillancenononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonononoyesyes
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonoyes
    A2P026: e-Mobilitynoyesyesnoyesyes
    A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonoyes
    A2P026: Car-free areanonoyesnonono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesWalkability
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesNo
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)Miljöbyggnad silver/guldEPC = 0, energy neutral building
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesNoNoNo
    A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Promotion of energy communities (REC/CEC),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.)
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: OtherNo gas grid in Brunnshög
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • PPP models,
    • Other
    • Innovative business models
    • PPP models,
    • Circular economy models
    A3P006: OtherAttractivenes
    A3P007: Social models
    A3P007: Social models
    • Behavioural Change / End-users engagement,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
    • Other
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Quality of Life
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Quality of Life
    A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Low Emission Zone
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaRuralUrban areaSuburban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction,
    • Renovation
    • New construction
    • New construction
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • New Development
    • New Development
    • Retrofitting Area
    • Re-use / Transformation Area
    B1P006: Year of construction
    B1P006: Year of construction
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential0
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential1800014000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential2000
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential2200010000
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.026666666666667000.041379310344828
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonononoyesyes
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenonoyesnonoyes
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynonononoyesyes
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnononononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonoyesnonono
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononoyes
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonoyesnonono
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesyesyesyes
    B1P014 - Residential: Specify the sqm [m²]6000002394
    B1P014: Officenonoyesnonoyes
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynonononoyesno
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnononononoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesnonono
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonoyesnonoyes
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: Scale
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P001: The ability to predict Multiple Benefits1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important
    C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
    C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
    C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P003: Lack of public participation3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
    C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Non-effective regulations4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
    C1P005: Insufficient or insecure financial incentives4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Shortage of proven and tested solutions and examples3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers?
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Deficient planning3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Lack/cost of computational scalability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Any other Thecnical BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P009: Lack of awareness among authorities4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Risk and uncertainty5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P010: Lack of consolidated and tested business models5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P011: Energy price distortion1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Research & Innovation
    • Monitoring/operation/management
    • Design/demand aggregation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Construction/implementation
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation
    C1P012: Real Estate developers
    • Planning/leading,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • None
    • None
    • Planning/leading
    C1P012: Industry/SME/eCommerce
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)