Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Uncompare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Uncompare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Uncompare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Uncompare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Uncompare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Uncompare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Uncompare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Stor-Elvdal, Campus Evenstad | Lund, Brunnshög district | Maia, Sobreiro Social Housing | Kladno, Sletiště (Sport Area), PED Winter Stadium | Izmir, District of Karşıyaka | Bologna, Pilastro-Roveri district | Romania, Alba Iulia PED | Lubia (Soria), CEDER-CIEMAT |
---|---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Stor-Elvdal, Campus Evenstad | Lund, Brunnshög district | Maia, Sobreiro Social Housing | Kladno, Sletiště (Sport Area), PED Winter Stadium | Izmir, District of Karşıyaka | Bologna, Pilastro-Roveri district | Romania, Alba Iulia PED | Lubia (Soria), CEDER-CIEMAT |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
|
|
| ||||
A1P003: Categorisation of the PED site | |||||||||
PED case study | no | no | yes | no | no | yes | no | yes | no |
PED relevant case study | yes | yes | no | no | yes | no | yes | no | no |
PED Lab. | no | no | no | yes | no | no | no | no | yes |
A1P004: Targets of the PED case study / PED Lab | |||||||||
Climate neutrality | no | yes | yes | yes | yes | yes | yes | yes | no |
Annual energy surplus | no | yes | yes | no | yes | yes | no | yes | no |
Energy community | yes | no | yes | no | yes | no | yes | yes | no |
Circularity | no | no | yes | no | no | no | no | no | no |
Air quality and urban comfort | yes | no | yes | no | no | yes | no | yes | yes |
Electrification | yes | no | yes | no | yes | no | no | yes | no |
Net-zero energy cost | no | no | no | no | no | yes | no | no | no |
Net-zero emission | no | no | yes | no | no | no | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no | no | yes | yes |
Maximise self-sufficiency | no | no | no | yes | no | yes | no | yes | no |
Other | no | yes | yes | no | no | no | no | no | no |
Other (A1P004) | Energy-flexibility | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | |||||||
A1P005: Phase of the PED case study / PED Lab | |||||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | In operation | In operation | Planning Phase | Planning Phase | Planning Phase | Planning Phase | Implementation Phase | Implementation Phase |
A1P006: Start Date | |||||||||
A1P006: Start date | 01/13 | 2015 | 10/21 | 2022 | 10/22 | 09/19 | 01/24 | 11/19 | |
A1P007: End Date | |||||||||
A1P007: End date | 12/24 | 2040 | 10/24 | 10/25 | 10/23 | 12/26 | 12/23 | ||
A1P008: Reference Project | |||||||||
A1P008: Reference Project | |||||||||
A1P009: Data availability | |||||||||
A1P009: Data availability |
|
|
|
|
|
|
| ||
A1P009: Other | GIS open dataset is under construction | Other | |||||||
A1P010: Sources | |||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| ||||||
A1P011: Geographic coordinates | |||||||||
X Coordinate (longitude): | 23.814588 | 11.078770773531746 | 13.232469400769599 | -8.373557 | 14.09296 | 27.110049 | 11.397323 | 23.580112098023235 | -2.508 |
Y Coordinate (latitude): | 38.077349 | 61.42604420399112 | 55.71989792207193 | 41.135804 | 50.13715 | 38.496054 | 44.507106 | 46.077015278680115 | 41.603 |
A1P012: Country | |||||||||
A1P012: Country | Greece | Norway | Sweden | Portugal | Czech Republic | Turkey | Italy | Romania | Spain |
A1P013: City | |||||||||
A1P013: City | Municipality of Kifissia | Evenstad, Stor-Elvdal municipality | Lund | Maia | Kladno | İzmir | Bologna | Alba Iulia | Lubia - Soria |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Dwc | Dfb | Csb | Cfb | Csa | Cfa | Dfb | Cfb |
A1P015: District boundary | |||||||||
A1P015: District boundary | Virtual | Geographic | Geographic | Virtual | Geographic | Geographic | Geographic | Functional | Geographic |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | V1* (ca 8 buildings) | Geographic | ||||||
A1P016: Ownership of the case study/PED Lab | |||||||||
A1P016: Ownership of the case study/PED Lab: | Public | Public | Public | Mixed | Private | Mixed | Public | Public | |
A1P017: Ownership of the land / physical infrastructure | |||||||||
A1P017: Ownership of the land / physical infrastructure: | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | Single Owner | |
A1P018: Number of buildings in PED | |||||||||
A1P018: Number of buildings in PED | 22 | 200 | 22 | 8 | 21 | 1962 | 6 | 6 | |
A1P019: Conditioned space | |||||||||
A1P019: Conditioned space [m²] | 10000 | 1500000 | 102795 | ||||||
A1P020: Total ground area | |||||||||
A1P020: Total ground area [m²] | 1500000 | 32600 | 7800000 | 8423.45 | 6400000 | ||||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 |
A1P022: Financial schemes | |||||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | yes | no | yes | no | no | no | no |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | ||||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | yes | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | yes | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | yes | no | yes | no | no | yes | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | ||||||||
A1P022e: Financing - PUBLIC - National funding | no | yes | yes | yes | no | no | yes | yes | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | ||||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | yes | yes | no | no | yes | yes | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | yes | no | yes | no | yes | yes | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | yes | yes | yes | yes | no | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | 1193355 | |||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | yes | no | no | yes | yes | no | no | yes |
A1P022j: Add the value in EUR if available [EUR] | |||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | yes | no | yes |
A1P022k: Add the value in EUR if available [EUR] | |||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||||
A1P022: Other | |||||||||
A1P023: Economic Targets | |||||||||
A1P023: Economic Targets |
|
|
|
|
|
|
|
| |
A1P023: Other | World class sustainable living and research environments | Boosting sustainability for public schools | |||||||
A1P024: More comments: | |||||||||
A1P024: More comments: | The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190] | The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads. | |||||||
A1P025: Estimated PED case study / PED LAB costs | |||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 3.5 | ||||||||
Contact person for general enquiries | |||||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Åse Lekang Sørensen | Markus Paulsson | Adelina Rodrigues | David Škorňa | Ozlem Senyol | Prof. Danila Longo | Tudor Drâmbărean | Dr. Raquel Ramos |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | SINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities | City of Lund | Maia Municipality (CM Maia) – Energy and Mobility division | Město Kladno | Karsiyaka Municipality | University of Bologna - Architecture Department | Municipality of Alba Iulia | Centre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT) |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Research Center / University |
A1P028: Other | Maria Elena Seemann | ||||||||
A1P029: Email | giavasoglou@kifissia.gr | ase.sorensen@sintef.no | markus.paulsson@lund.se | dscm.adelina@cm-maia.pt | david.skorna@mestokladno.cz | ozlemkocaer2@gmail.com | tudor.drambarean@apulum.ro | raquel.ramos@ciemat.es | |
Contact person for other special topics | |||||||||
A1P030: Name | Stavros Zapantis - vice mayor | Eva Dalman | Carolina Gonçalves (AdEPorto) | Michal Kuzmič | Hasan Burak Cavka | Maria-Elena Seemann | Dr. Oscar Seco | ||
A1P031: Email | stavros.zapantis@gmail.com | eva.dalman@lund.se | carolinagoncalves@adeporto.eu | michal.kuzmic@cvut.cz | hasancavka@iyte.edu.tr | maria.seemann@apulum.roapul | oscar.seco@ciemat.es | ||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | |||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied. | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area: | Trnsys, PV modelling tools, CAD | Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED. | Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation | Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields. | Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour. | |
A2P003: Application of ISO52000 | |||||||||
A2P003: Application of ISO52000 | No | No | No | No | Yes | Yes | Yes | No | |
A2P004: Appliances included in the calculation of the energy balance | |||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | |
A2P005: Mobility included in the calculation of the energy balance | |||||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | Yes | No | No | No | No | No | No | |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance. | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Not yet included. | Mobility is not included in the calculations. | There will be 1 EV station placed nearby the main building. This would be the link to the mobility field. | ||||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 0.77 | 25 | 1.4 | 3.862 | 0.982 | ||||
A2P008: Annual energy demand in buildings / Electric Demand | |||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.76 | 30 | 0.3 | 1.226 | 0.048441 | ||||
A2P009: Annual energy demand for e-mobility | |||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | |||||||||
A2P010: Annual energy demand for urban infrastructure | |||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||||
A2P011: PV | yes | yes | yes | yes | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.065 | 1.1 | 1.028 | ||||||
A2P011: Wind | no | no | yes | no | no | no | no | no | yes |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no | yes |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: Biomass_el | no | yes | no | no | no | no | no | no | yes |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | 0.050 | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: PVT_el | no | no | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: Other | no | no | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||||
A2P012: Geothermal | no | no | no | no | no | no | no | no | yes |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Solar Thermal | no | yes | no | yes | no | no | yes | no | yes |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.045 | ||||||||
A2P012: Biomass_heat | no | yes | no | no | no | no | yes | no | yes |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.35 | ||||||||
A2P012: Waste heat+HP | no | no | yes | no | yes | no | no | no | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | 1.7 | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: PVT_th | no | no | no | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no | yes |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Other | no | no | no | no | no | no | no | yes | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P013: Renewable resources on-site - Additional notes | |||||||||
A2P013: Renewable resources on-site - Additional notes | Listed values are measurements from 2018. Renewable energy share is increasing. | Waste heat from cooling the ice rink. | Only PVs - 940 PVs on the main building | ||||||
A2P014: Annual energy use | |||||||||
A2P014: Annual energy use [GWh/annum] | 1.500 | 2.1 | 5.088 | 0.000048441 | |||||
A2P015: Annual energy delivered | |||||||||
A2P015: Annual energy delivered [GWh/annum] | 1 | 0.000113331 | |||||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | |||||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||||
A2P017: Gas | no | no | no | no | no | yes | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Coal | no | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Oil | no | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Other | no | no | no | no | no | no | no | yes | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||||
A2P018: PV | no | no | yes | no | no | yes | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | 0.707 | ||||||||
A2P018: Wind | no | no | yes | no | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Hydro | no | no | yes | no | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Biomass_el | no | no | yes | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Other | no | no | no | no | no | no | no | yes | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Other | no | no | no | no | no | no | no | yes | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 1.4540311173975 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | -104 | ||||||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||||
A2P022: Safety & Security | yes | ||||||||
A2P022: Health | yes | ||||||||
A2P022: Education | yes | ||||||||
A2P022: Mobility | Maximum 1/3 transport with car | yes | |||||||
A2P022: Energy | Local energy production 150% of energy need | Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance | yes | ||||||
A2P022: Water | yes | ||||||||
A2P022: Economic development | Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI | yes | |||||||
A2P022: Housing and Community | 50% rental apartments and 50% owner apartments | ||||||||
A2P022: Waste | |||||||||
A2P022: Other | |||||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||||
A2P023: Photovoltaics | no | yes | yes | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | yes | yes | yes | no | no | yes | yes | yes |
A2P023: Wind Turbines | no | no | yes | no | no | no | no | no | yes |
A2P023: Geothermal energy system | no | no | yes | no | no | no | yes | no | yes |
A2P023: Waste heat recovery | no | no | yes | no | yes | no | no | no | yes |
A2P023: Waste to energy | no | no | no | no | no | no | yes | no | no |
A2P023: Polygeneration | no | no | yes | no | no | no | no | yes | yes |
A2P023: Co-generation | no | yes | no | no | no | no | yes | yes | yes |
A2P023: Heat Pump | no | no | yes | yes | yes | yes | yes | yes | yes |
A2P023: Hydrogen | no | no | yes | no | no | no | no | no | yes |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no | yes |
A2P023: Biomass | no | yes | no | no | no | no | no | no | yes |
A2P023: Biogas | no | no | no | no | no | no | no | no | no |
A2P023: Other | The Co-generation is biomass based. | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | yes | yes | no | yes | yes | yes |
A2P024: Energy management system | no | yes | yes | yes | yes | no | no | yes | yes |
A2P024: Demand-side management | no | yes | yes | no | yes | no | no | yes | yes |
A2P024: Smart electricity grid | no | no | yes | no | no | no | no | yes | yes |
A2P024: Thermal Storage | no | yes | yes | no | no | no | no | no | yes |
A2P024: Electric Storage | no | yes | yes | yes | no | no | yes | yes | yes |
A2P024: District Heating and Cooling | no | yes | yes | no | yes | no | yes | no | yes |
A2P024: Smart metering and demand-responsive control systems | no | yes | yes | yes | yes | no | no | yes | yes |
A2P024: P2P – buildings | no | no | no | no | no | no | no | yes | no |
A2P024: Other | Bidirectional electric vehicle (EV) charging (V2G) | ||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||||
A2P025: Deep Retrofitting | no | no | no | yes | yes | yes | yes | yes | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no | no | no | no |
A2P025: High-performance new buildings | no | yes | yes | no | no | no | yes | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | yes | yes | no | no | yes | yes | no |
A2P025: Urban data platforms | no | no | yes | no | yes | no | no | yes | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | no | yes | no | no |
A2P025: Building services (HVAC & Lighting) | no | no | yes | yes | yes | yes | yes | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | yes | yes | no | no | yes | no | no |
A2P025: Smart surveillance | no | no | no | no | no | no | yes | no | no |
A2P025: Other | |||||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | yes | no | no | yes | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | yes | no | no | no | yes | yes | no |
A2P026: e-Mobility | no | yes | yes | yes | no | no | yes | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | yes | no | no | no | yes | no | no |
A2P026: Car-free area | no | no | yes | no | no | no | no | no | yes |
A2P026: Other | |||||||||
A2P027: Mobility strategies - Additional notes | |||||||||
A2P027: Mobility strategies - Additional notes | Walkability | The new mobility plan integrates the PED area | |||||||
A2P028: Energy efficiency certificates | |||||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | Passive house (2 buildings, 4 200 m2, from 2015) | Miljöbyggnad silver/guld | The Municipal Buildings have an energy certificate, according to the Portuguese legislation. | National standards apply. | Energy Performance Certificate for each dwelling | In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling | ||
A2P029: Any other building / district certificates | |||||||||
A2P029: Any other building / district certificates | Yes | No | No | No | No | No | Yes | No | |
A2P029: If yes, please specify and/or enter notes | Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016) | ||||||||
A3P001: Relevant city /national strategy | |||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | |||||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | Carbon neutrality 2050 | Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023. | City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal; | 40% reduction in emissions by 2030 according to the Covenant of Mayors | - Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation. | |||
A3P003: Strategies towards decarbonization of the gas grid | |||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
|
|
| |||
A3P003: Other | No gas grid in Brunnshög | At a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far. | |||||||
A3P004: Identification of needs and priorities | |||||||||
A3P004: Identification of needs and priorities | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario. | Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility. | - Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED | - Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested. | ||||
A3P005: Sustainable behaviour | |||||||||
A3P005: Sustainable behaviour | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri. | - Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system | - Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems. | |||||
A3P006: Economic strategies | |||||||||
A3P006: Economic strategies |
|
|
|
|
|
| |||
A3P006: Other | Attractivenes | ||||||||
A3P007: Social models | |||||||||
A3P007: Social models |
|
|
|
|
|
|
|
| |
A3P007: Other | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies. | ||||||||
A3P008: Integrated urban strategies | |||||||||
A3P008: Integrated urban strategies |
|
|
|
|
|
|
| ||
A3P008: Other | |||||||||
A3P009: Environmental strategies | |||||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
|
| |
A3P009: Other | |||||||||
A3P010: Legal / Regulatory aspects | |||||||||
A3P010: Legal / Regulatory aspects | Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates. | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’ | - European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | |||||
B1P001: PED/PED relevant concept definition | |||||||||
B1P001: PED/PED relevant concept definition | The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Onsite Energy Ratio > 1 | The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED). | Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability. | Positive energy district | |||
B1P002: Motivation behind PED/PED relevant project development | |||||||||
B1P002: Motivation behind PED/PED relevant project development | In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions. | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | Strategic, economic | Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030. | Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency. | ||||
B1P003: Environment of the case study area | |||||||||
B2P003: Environment of the case study area | Rural | Urban area | Urban area | Urban area | Urban area | Urban area | Rural | ||
B1P004: Type of district | |||||||||
B2P004: Type of district |
|
|
|
|
|
| |||
B1P005: Case Study Context | |||||||||
B1P005: Case Study Context |
|
|
|
|
|
| |||
B1P006: Year of construction | |||||||||
B1P006: Year of construction | 2005 | 1976 | |||||||
B1P007: District population before intervention - Residential | |||||||||
B1P007: District population before intervention - Residential | 0 | ||||||||
B1P008: District population after intervention - Residential | |||||||||
B1P008: District population after intervention - Residential | 18000 | ||||||||
B1P009: District population before intervention - Non-residential | |||||||||
B1P009: District population before intervention - Non-residential | 2000 | ||||||||
B1P010: District population after intervention - Non-residential | |||||||||
B1P010: District population after intervention - Non-residential | 22000 | ||||||||
B1P011: Population density before intervention | |||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||||
B1P012: Population density after intervention | 0 | 0 | 0.026666666666667 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P013: Building and Land Use before intervention | |||||||||
B1P013: Residential | no | no | no | no | yes | yes | yes | no | no |
B1P013 - Residential: Specify the sqm [m²] | 102795 | ||||||||
B1P013: Office | no | no | yes | no | yes | no | yes | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | yes | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||||
B1P013: Commercial | no | no | no | no | no | no | yes | no | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||||||
B1P013: Institutional | no | no | no | no | no | no | yes | yes | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||||
B1P013: Natural areas | no | no | yes | no | no | no | yes | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | ||||||||
B1P013: Recreational | no | no | no | no | yes | no | yes | no | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | yes | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||||
B1P013: Other | no | no | yes | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | ||||||||
B1P014: Building and Land Use after intervention | |||||||||
B1P014: Residential | no | no | yes | no | yes | yes | yes | no | no |
B1P014 - Residential: Specify the sqm [m²] | 600000 | 102795 | |||||||
B1P014: Office | no | no | yes | no | yes | no | yes | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | yes | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||||
B1P014: Commercial | no | no | no | no | no | no | yes | no | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||||||
B1P014: Institutional | no | no | yes | no | no | no | yes | yes | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | ||||||||
B1P014: Natural areas | no | no | no | no | no | no | yes | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||||
B1P014: Recreational | no | no | yes | no | yes | no | yes | no | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | yes | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||||
B1P014: Other | no | no | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||||||
B2P001: PED Lab concept definition | |||||||||
B2P001: PED Lab concept definition | |||||||||
B2P002: Installation life time | |||||||||
B2P002: Installation life time | Permanent installation | CEDER will follow an integrative approach including technology for a permanent installation. | |||||||
B2P003: Scale of action | |||||||||
B2P003: Scale | Virtual | District | |||||||
B2P004: Operator of the installation | |||||||||
B2P004: Operator of the installation | CM Maia, IPMAIA, NEW, AdEP. | CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||||
B2P006: Circular Economy Approach | |||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | |||||||
B2P006: Other | |||||||||
B2P007: Motivation for developing the PED Lab | |||||||||
B2P007: Motivation for developing the PED Lab |
|
| |||||||
B2P007: Other | |||||||||
B2P008: Lead partner that manages the PED Lab | |||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | |||||||
B2P008: Other | |||||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||||
B2P009: Collaborative partners that participate in the PED Lab |
|
| |||||||
B2P009: Other | Energy Agency | ||||||||
B2P010: Synergies between the fields of activities | |||||||||
B2P010: Synergies between the fields of activities | The operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system. | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| |||||||
B2P011: Other | |||||||||
B2P012: Incubation capacities of PED Lab | |||||||||
B2P012: Incubation capacities of PED Lab |
|
| |||||||
B2P013: Availability of the facilities for external people | |||||||||
B2P013: Availability of the facilities for external people | Depends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents. | ||||||||
B2P014: Monitoring measures | |||||||||
B2P014: Monitoring measures |
|
| |||||||
B2P015: Key Performance indicators | |||||||||
B2P015: Key Performance indicators |
|
| |||||||
B2P016: Execution of operations | |||||||||
B2P016: Execution of operations | Current PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted. | ||||||||
B2P017: Capacities | |||||||||
B2P017: Capacities | _Energy production and storage, _Monitoring; _Digitization. | - Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product. | |||||||
B2P018: Relations with stakeholders | |||||||||
B2P018: Relations with stakeholders | The relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners. | CEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions. | |||||||
B2P019: Available tools | |||||||||
B2P019: Available tools |
|
| |||||||
B2P019: Available tools | |||||||||
B2P020: External accessibility | |||||||||
B2P020: External accessibility | CIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements. | ||||||||
C1P001: Unlocking Factors | |||||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 2 - Slightly important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important |
C1P001: Storage systems and E-mobility market penetration | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | |
C1P001: Decreasing costs of innovative materials | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P001: The ability to predict Multiple Benefits | 1 - Unimportant | 2 - Slightly important | 4 - Important | 2 - Slightly important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | |
C1P001: The ability to predict the distribution of benefits and impacts | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important |
C1P001: Social acceptance (top-down) | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | 4 - Important | 2 - Slightly important | 3 - Moderately important |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important |
C1P001: Availability of RES on site (Local RES) | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | Collaboration with the local partners | ||||||||
C1P002: Driving Factors | |||||||||
C1P002: Climate Change adaptation need | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 5 - Very important |
C1P002: Economic growth need | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P002: Energy autonomy/independence | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | |||||||||
C1P003: Administrative barriers | |||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important |
C1P003: Lack of public participation | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | Fragmented financial support; lack of experimental budget for complex projects, etc. | ||||||||
C1P004: Policy barriers | |||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important | 2 - Slightly important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc. | ||||||||
C1P005: Legal and Regulatory barriers | |||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P005: Regulatory instability | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important |
C1P005: Non-effective regulations | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P005: Shortage of proven and tested solutions and examples | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||||
C1P006: Environmental barriers | |||||||||
C1P006: Environmental barriers | ? | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1 | 3 - Moderately important | ||||||
C1P007: Technical barriers | |||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Deficient planning | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 2 - Slightly important |
C1P007: Lack of well-defined process | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important |
C1P007: Grid congestion, grid instability | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 5 - Very important |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P007: Any other Thecnical BARRIER | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges. | Inadequate regulation towards energy transition | |||||||
C1P008: Social and Cultural barriers | |||||||||
C1P008: Inertia | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | 2 - Slightly important |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important |
C1P008: Rebound effect | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 2 - Slightly important |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | |||||||||
C1P009: Information and Awareness barriers | |||||||||
C1P009: Insufficient information on the part of potential users and consumers | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P009: Lack of awareness among authorities | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | |
C1P009: Any other Information and Awareness BARRIER | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | Different interests - Grid/energy stakeholders and building stakeholders | ||||||||
C1P010: Financial barriers | |||||||||
C1P010: Hidden costs | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 2 - Slightly important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P010: Economic crisis | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | |
C1P010: Risk and uncertainty | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | |
C1P010: Lack of consolidated and tested business models | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 2 - Slightly important | |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | |||||||||
C1P011: Market barriers | |||||||||
C1P011: Split incentives | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P011: Energy price distortion | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 1 - Unimportant | 2 - Slightly important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | |||||||||
C1P012: Stakeholders involved | |||||||||
C1P012: Government/Public Authorities |
|
|
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
|
| ||||
C1P012: Financial/Funding |
|
|
|
| |||||
C1P012: Analyst, ICT and Big Data |
|
|
|
| |||||
C1P012: Business process management |
|
|
|
| |||||
C1P012: Urban Services providers |
|
|
|
| |||||
C1P012: Real Estate developers |
|
|
|
|
| ||||
C1P012: Design/Construction companies |
|
|
|
| |||||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
| ||||
C1P012: Social/Civil Society/NGOs |
|
|
|
| |||||
C1P012: Industry/SME/eCommerce |
|
|
|
| |||||
C1P012: Other | |||||||||
C1P012: Other (if any) | |||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)