Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Uncompare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Uncompare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Uncompare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Uncompare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Uncompare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Stor-Elvdal, Campus Evenstad | Groningen, PED South | Groningen, PED North | Leipzig, Baumwollspinnerei district | Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark | Oulu, Kaukovainio | Ankara, Çamlık District |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Stor-Elvdal, Campus Evenstad | Groningen, PED South | Groningen, PED North | Leipzig, Baumwollspinnerei district | Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark | Oulu, Kaukovainio | Ankara, Çamlık District |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| |||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | no | no | no | yes | no | yes | yes |
PED relevant case study | yes | yes | no | no | no | yes | no | yes |
PED Lab. | no | no | yes | yes | no | yes | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | no | yes | yes | yes | yes | yes | yes | yes |
Annual energy surplus | no | yes | yes | yes | no | no | no | yes |
Energy community | yes | no | yes | yes | no | no | no | yes |
Circularity | no | no | yes | yes | no | no | yes | no |
Air quality and urban comfort | yes | no | no | no | yes | no | no | no |
Electrification | yes | no | no | no | yes | no | yes | yes |
Net-zero energy cost | no | no | no | no | no | no | no | yes |
Net-zero emission | no | no | yes | yes | no | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no | no | no |
Maximise self-sufficiency | no | no | no | no | no | yes | no | yes |
Other | no | yes | no | no | yes | no | no | no |
Other (A1P004) | Energy-flexibility | Net-zero emission; Annual energy surplus | ||||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | In operation | Implementation Phase | Implementation Phase | Implementation Phase | Planning Phase | In operation | Planning Phase |
A1P006: Start Date | ||||||||
A1P006: Start date | 01/13 | 12/18 | 12/18 | 11/22 | 10/22 | |||
A1P007: End Date | ||||||||
A1P007: End date | 12/24 | 12/23 | 12/23 | 11/25 | 09/25 | |||
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
| |||
A1P009: Other | ||||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| ||||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 23.814588 | 11.078770773531746 | 6.590655 | 6.535121 | 12.318458 | 10.007 | 25.517595084093507 | 32.795369 |
Y Coordinate (latitude): | 38.077349 | 61.42604420399112 | 53.204087 | 53.234846 | 51.326492 | 57.041028 | 64.99288098173132 | 39.881812 |
A1P012: Country | ||||||||
A1P012: Country | Greece | Norway | Netherlands | Netherlands | Germany | Denmark | Finland | Turkey |
A1P013: City | ||||||||
A1P013: City | Municipality of Kifissia | Evenstad, Stor-Elvdal municipality | Groningen | Groningen | Leipzig | Aalborg | Oulu | Ankara |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Dwc | Cfa | Cfa | Dfb | Dfb | Dfc | Dsb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Virtual | Geographic | Functional | Functional | Functional | Virtual | Geographic | |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Geographic | Regional (close to virtual) | |||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Public | Mixed | Mixed | Public | Mixed | Private | ||
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | Multiple Owners | ||
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 22 | 4 | 7 | 2 | 6 | 257 | ||
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 10000 | 7.86 | 1.01 | 17000 | 19700 | 22600 | ||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 45.093 | 17.132 | 30000 | 31308000 | 60000 | 50800 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | yes | yes | no | no | yes | no |
A1P022a: Add the value in EUR if available [EUR] | ||||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | no | yes | yes | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | ||||||||
A1P022e: Financing - PUBLIC - National funding | no | yes | yes | yes | no | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | ||||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | yes | yes | no | no | yes | no |
A1P022g: Add the value in EUR if available [EUR] | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | yes | no | no | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | ||||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | yes | no | no | no | yes | no | yes |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
|
|
| ||
A1P023: Other | Sustainable and replicable business models regarding renewable energy systems | Developing and demonstrating new solutions | ||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings. | |||||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 5 | |||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Åse Lekang Sørensen | Jasper Tonen, Elisabeth Koops | Jasper Tonen, Elisabeth Koops | Simon Baum | Kristian Olesen | Samuli Rinne | Prof. Dr. İpek Gürsel DİNO |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | SINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities | Municipality of Groningen | Municipality of Groningen | CENERO Energy GmbH | Aalborg University | City of Oulu | Middle East Technical University |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies | Other | Research Center / University | Municipality / Public Bodies | Research Center / University |
A1P028: Other | CENERO Energy GmbH | |||||||
A1P029: Email | giavasoglou@kifissia.gr | ase.sorensen@sintef.no | Jasper.tonen@groningen.nl | Jasper.tonen@groningen.nl | sib@cenero.de | Kristian@plan.aau.dk | samuli.rinne@ouka.fi | ipekg@metu.edu.tr |
Contact person for other special topics | ||||||||
A1P030: Name | Stavros Zapantis - vice mayor | Simon Baum | Alex Søgaard Moreno | Samuli Rinne | Assoc. Prof. Onur Taylan | |||
A1P031: Email | stavros.zapantis@gmail.com | sib@cenero.de | asm@aalborg.dk | samuli.rinne@ouka.fi | otaylan@metu.edu.tr | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | ||
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
A2P001: Other | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied. | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | Stakeholder engagement, expert energy system analysis, future scenarios | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system. | ||
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | No | No | No | No | Yes | ||
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | No | No | No | No | Yes | ||
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | No | No | No | No | No | ||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance. | Mobility, till now, is not included in the energy model. | Mobility, till now, is not included in the energy model. | Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic. | Not included. However, there is a charging place for a shared EV in one building. | Mobility is not included in the calculations. | ||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 0.77 | 1.86 | 2.3 | 1.65 | 218 | 2.1 | 3.446 | |
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.76 | 1.45 | 0.33 | 148 | 0.2 | 0.528 | ||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | no | no | yes | no | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.065 | 0.1 | 3.4240 | |||||
A2P011: Wind | no | no | no | no | no | yes | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | yes | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | 0.050 | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Other | no | no | no | no | no | yes | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | yes | yes | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | no | yes | yes | yes | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.045 | |||||||
A2P012: Biomass_heat | no | yes | yes | yes | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.35 | 0.1 | ||||||
A2P012: Waste heat+HP | no | no | yes | yes | no | yes | yes | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 300 | 2.2 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | yes | yes | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | Listed values are measurements from 2018. Renewable energy share is increasing. | Geothermal heatpump systems, Waste heat from data centers | Geothermal heatpump systems, Waste heat from data centers | Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid. | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | |||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 1.500 | 2.421 | 620 | 2.3 | 3.976 | |||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | 1 | 399 | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | |||||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | no | no | no | no | no | no | yes |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | no | no | no | yes | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 300 | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | no | no | no | no | no | yes | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Wind | no | no | no | no | no | no | yes | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | no | no | no | no | no | yes | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | no | no | no | no | no | yes | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | yes | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | no | no | no | no | no | yes | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | |||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 3.2857142857143 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | |||||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | ||||||||
A2P022: Health | Encouraging a healthy lifestyle | |||||||
A2P022: Education | ||||||||
A2P022: Mobility | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | |||||||
A2P022: Energy | apply | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | ||||||
A2P022: Water | ||||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | |||||||
A2P022: Housing and Community | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | |||||||
A2P022: Waste | Recycling rate | |||||||
A2P022: Other | Smart Cities strategies, Quality of open data | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | no | yes | yes | yes | no | yes | yes | yes |
A2P023: Solar thermal collectors | no | yes | yes | yes | no | yes | no | no |
A2P023: Wind Turbines | no | no | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | yes | yes | no | no | no | no |
A2P023: Waste heat recovery | no | no | yes | yes | no | yes | yes | no |
A2P023: Waste to energy | no | no | yes | yes | no | yes | no | no |
A2P023: Polygeneration | no | no | no | no | no | no | no | no |
A2P023: Co-generation | no | yes | no | no | no | no | yes | no |
A2P023: Heat Pump | no | no | yes | yes | no | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no |
A2P023: Biomass | no | yes | no | no | no | yes | yes | no |
A2P023: Biogas | no | no | no | no | no | no | no | no |
A2P023: Other | The Co-generation is biomass based. | |||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | yes | no | no | yes | no |
A2P024: Energy management system | no | yes | yes | yes | no | yes | yes | no |
A2P024: Demand-side management | no | yes | no | yes | no | yes | no | no |
A2P024: Smart electricity grid | no | no | no | no | no | yes | no | no |
A2P024: Thermal Storage | no | yes | yes | yes | no | yes | yes | no |
A2P024: Electric Storage | no | yes | yes | yes | no | yes | no | no |
A2P024: District Heating and Cooling | no | yes | yes | yes | no | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | no | yes | yes | yes | no | yes | no | no |
A2P024: P2P – buildings | no | no | no | no | no | no | no | no |
A2P024: Other | Bidirectional electric vehicle (EV) charging (V2G) | |||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | no | no | no | no | no | yes | yes | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | yes | yes | no | no | no | no |
A2P025: High-performance new buildings | no | yes | yes | yes | no | no | yes | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | yes | yes | no | no | no | no |
A2P025: Urban data platforms | no | no | yes | yes | no | no | yes | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | no | no | no | no | no | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | yes | no | no |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | no | no | no | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | no | no | yes | no |
A2P026: e-Mobility | no | yes | yes | yes | no | no | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | no | no | yes | no |
A2P026: Car-free area | no | no | no | no | no | no | no | no |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | Test-Concept for bidirectional charging. | |||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | Yes | No | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | Passive house (2 buildings, 4 200 m2, from 2015) | Energy Performance Certificate | Energy Performance Certificate | The obligatory buildijng energy classification | |||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | Yes | No | No | No | ||||
A2P029: If yes, please specify and/or enter notes | Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016) | |||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | Reduction of 1018000 tons CO2 by 2030 | Carbon neutrality by 2035 | ||||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
|
| |||
A3P003: Other | ||||||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city. | Developing and demonstrating solutions for carbon neutrality | According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario. | |||||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | - Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings. | E. g. visualizing energy and water consumption | ||||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
|
|
| |||
A3P006: Other | operational savings through efficiency measures | |||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
|
|
|
| |
A3P007: Other | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies. | |||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
|
|
|
| |||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
| |
A3P009: Other | Positive Energy Balance for the demo site | Energy Positive, Low Emission Zone | ||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates. | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own | ||||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating. | The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat. | The original idea is that the area produces at least as much it consumes. | Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development. | ||||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions. | The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences. | Developing systems towards carbon neutrality. Also urban renewal. | PED-ACT project. | ||||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Rural | Suburban area | Suburban area | Suburban area | ||||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
| ||||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
| |||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 1986 | |||||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 16.931 | 3500 | ||||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | 3500 | |||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0.058333333333333 | 0 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | no | no | no | no | no | no | yes | yes |
B1P013 - Residential: Specify the sqm [m²] | 50800 | |||||||
B1P013: Office | no | no | no | no | no | no | no | no |
B1P013 - Office: Specify the sqm [m²] | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | no | no | no | no | no | no | yes | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||||
B1P013: Natural areas | no | no | no | no | no | no | yes | no |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||||
B1P013: Recreational | no | no | no | no | no | no | yes | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | no | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | ||||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | no | no | no | no | no | no | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 50800 | |||||||
B1P014: Office | no | no | no | no | no | no | no | no |
B1P014 - Office: Specify the sqm [m²] | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | no | no | no | no | no | no | yes | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | no | no | no | no | no | no | no |
B1P014 - Institutional: Specify the sqm [m²] | ||||||||
B1P014: Natural areas | no | no | no | no | no | no | yes | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | no | no | no | no | no | no | yes | no |
B1P014 - Recreational: Specify the sqm [m²] | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | An ongoing process and dialogue with local stakeholders to determine the future development of the area. | |||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies. | |||||
B2P003: Scale of action | ||||||||
B2P003: Scale | District | District | District | |||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | Kristian Olesen | |||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | Groningen does not have a strategy to reuse and recyle materials | Replication is primarily focused on the establishment of a local network with an interest in and understanding of PED. | |||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | No | |||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
|
|
| |||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Municipality | Research center/University | |||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab |
|
|
| |||||
B2P009: Other | research companies, monitoring company, ict company | research companies, monitoring company, ict company | ||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
|
| ||||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
|
| ||||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | ||||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
|
| ||||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 5 - Very important | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 2 - Slightly important | |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | |
C1P001: Storage systems and E-mobility market penetration | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P001: Decreasing costs of innovative materials | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P001: The ability to predict Multiple Benefits | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | ||
C1P001: The ability to predict the distribution of benefits and impacts | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important | ||
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | |
C1P001: Social acceptance (top-down) | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | |
C1P001: Availability of RES on site (Local RES) | 5 - Very important | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | 4 - Important | ||
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | ||
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 4 - Important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P002: Economic growth need | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 5 - Very important | |
C1P002: Energy autonomy/independence | 5 - Very important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | Earthquakes due to gas extraction | ||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important | |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P003: Lack of public participation | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 4 - Important | |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important | |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P003: Any other Administrative BARRIER (if any) | ||||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 5 - Very important | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P004: Any other Political BARRIER (if any) | ||||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P005: Regulatory instability | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | |
C1P005: Non-effective regulations | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 3 - Moderately important | |
C1P005: Shortage of proven and tested solutions and examples | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | ||
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | - Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1 | |||||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | |
C1P007: Deficient planning | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P007: Lack of well-defined process | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Lack/cost of computational scalability | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | |
C1P007: Grid congestion, grid instability | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | |
C1P007: Any other Thecnical BARRIER | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P007: Any other Thecnical BARRIER (if any) | Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges. | |||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 4 - Important | |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P008: Rebound effect | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P008: Hostile or passive attitude towards energy collaboration | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | ||
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | ||
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 5 - Very important | ||
C1P009: Lack of awareness among authorities | 4 - Important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | ||
C1P009: Information asymmetry causing power asymmetry of established actors | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | ||
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | ||
C1P009: Any other Information and Awareness BARRIER | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P009: Any other Information and Awareness BARRIER (if any) | Different interests - Grid/energy stakeholders and building stakeholders | |||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | ||
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | ||
C1P010: Economic crisis | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | ||
C1P010: Risk and uncertainty | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | ||
C1P010: Lack of consolidated and tested business models | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | ||
C1P010: Limited access to capital and cost disincentives | 4 - Important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 1 - Unimportant | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | ||
C1P011: Energy price distortion | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 4 - Important | ||
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | ||
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
|
|
| ||||
C1P012: Research & Innovation |
|
|
|
| ||||
C1P012: Financial/Funding |
|
|
|
| ||||
C1P012: Analyst, ICT and Big Data |
|
|
|
| ||||
C1P012: Business process management |
|
|
|
| ||||
C1P012: Urban Services providers |
|
|
| |||||
C1P012: Real Estate developers |
|
|
|
| ||||
C1P012: Design/Construction companies |
|
|
|
| ||||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| ||||
C1P012: Social/Civil Society/NGOs |
|
|
|
| ||||
C1P012: Industry/SME/eCommerce |
|
|
|
| ||||
C1P012: Other | ||||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)