Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Kladno, Sletiště (Sport Area), PED Winter Stadium
Riga, Ķīpsala, RTU smart student city
Amsterdam, Buiksloterham PED
Graz, Reininghausgründe
Leipzig, Baumwollspinnerei district
Halmstad, Fyllinge
Tampere, Ilokkaanpuisto district
Oslo, Verksbyen
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityKladno, Sletiště (Sport Area), PED Winter StadiumRiga, Ķīpsala, RTU smart student cityAmsterdam, Buiksloterham PEDGraz, ReininghausgründeLeipzig, Baumwollspinnerei districtHalmstad, FyllingeTampere, Ilokkaanpuisto districtOslo, Verksbyen
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesyesnonoyes
PED relevant case studyyesyesnonononoyesyesno
PED Lab.nonononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesnoyesyes
Annual energy surplusnoyesnoyesnonononoyes
Energy communityyesyesyesyesnonoyesyesno
Circularitynononoyesnonononono
Air quality and urban comfortyesnonononoyesnonoyes
Electrificationyesyesnoyesnoyesnoyesno
Net-zero energy costnonononononononono
Net-zero emissionnononoyesnononoyesyes
Self-sufficiency (energy autonomous)nonoyesnonononoyesno
Maximise self-sufficiencynonoyesnononononono
Othernononononoyesnonono
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseImplementation PhasePlanning PhaseCompletedImplementation Phase
A1P006: Start Date
A1P006: Start date202201/2411/19201901/2104/1407/18
A1P007: End Date
A1P007: End date12/2610/25202501/3010/2308/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
      • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
          • None yet, but coming
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458814.0929624.081683394.904115.40744012.31845812.9205423.79808310.986173354432992
          Y Coordinate (latitude):38.07734950.1371556.9524595652.367647.060751.32649256.6519461.46408859.22429716642046
          A1P012: Country
          A1P012: CountryGreeceCzech RepublicLatviaNetherlandsAustriaGermanySwedenFinlandNorway
          A1P013: City
          A1P013: CityMunicipality of KifissiaKladnoRigaAmsterdamGrazLeipzigHalmstadTampereFredrikstad
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCfbCfbDfbDfbDwbDfbCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicFunctionalGeographicFunctionalGeographicVirtualGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)Geographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedMixedMixedPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED81560100225062
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]17000028500170009.0003550
          A1P020: Total ground area
          A1P020: Total ground area [m²]11926410000003000025.000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area001001000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenoyesnoyesyesnoyesyesyes
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenoyesnonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononononoyesno
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonononoyesnonoyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyesnononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnonoyesyesno
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Positive externalities
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local and sustainable production
          • Boosting local and sustainable production
          A1P023: OtherSustainable and replicable business models regarding renewable energy systems
          A1P024: More comments:
          A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDavid ŠkorňaJudith StiekemaOmar ShafqatKatharina SchwarzSimon BaumMarkus OlofsgårdSenior Scientist Terttu VainioTonje Healey Trulsrud
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMěsto KladnoOASCAmsterdam University of Applied SciencesStadtLABOR, Innovationen für urbane Lebensqualität GmbHCENERO Energy GmbHAFRYVTT Technical Research Centre of FinlandNorwegian University of Science and technology (NTNU)
          A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversitySME / IndustryOtherOtherResearch Center / UniversityResearch Center / University
          A1P028: Othernot for profit private organisationCENERO Energy GmbH
          A1P029: Emailgiavasoglou@kifissia.grdavid.skorna@mestokladno.czjudith@oascities.orgo.shafqat@hva.nlkatharina.schwarz@stadtlaborgraz.atsib@cenero.demarkus.olofsgard@afry.comterttu.vainio@vtt.fitonje.h.trulsrud@ntnu.no
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorMichal KuzmičOmar ShafqatHans SchnitzerSimon Baum
          A1P031: Emailstavros.zapantis@gmail.commichal.kuzmic@cvut.czo.shafqat@hva.nlhans.schnitzer@stadtlaborgraz.atsib@cenero.de
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Water use,
          • Indoor air quality,
          • Other
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy production,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          A2P001: OtherUrban Management; Air Quality
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsTrnsys, PV modelling tools, CADA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.City vision, Innovation AteliersEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtlink based regulation of electricity gridEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYesNoNoNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesNoYesNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesNoYesYesNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot yet included.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.480001.6500.16
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.350000.70.053
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesnoyesyesyesyesyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]1.10.70.18
          A2P011: Windnonoyesnononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononoyesnonononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonoyesnononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononoyesyesnoyesyesno
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononoyesnononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonoyesyesnonononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnoyesnoyesyesnononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
          A2P012: Biomass_peat_heatnonononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Groundwater (used for heat pumps)PV plant of energy community locates outside of the city, not on the slot
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]2.12.4210.7
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesyesnonononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononoyesnonononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononoyesnonononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononoyesyesnononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononoyesyesnononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononoyesyesnononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononoyesnonononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononoyesnonononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononoyesnonononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononoyesnonononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononoyesyesnononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononoyesyesnononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononoyesyesnononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononoyesnonononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononoyesnonononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononoyesnonononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-1042500.0360-6.035
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
          A2P022: Education
          A2P022: MobilityxSustainable mobility
          A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balancexapplyEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
          A2P022: Waterx
          A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIxEconomic Performance: capital costs, operational costs, overall performance
          A2P022: Housing and Communityxdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
          A2P022: Waste
          A2P022: OtherSmartness and Flexibility
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesnoyesyesnoyesyesyes
          A2P023: Solar thermal collectorsnonononononononono
          A2P023: Wind Turbinesnonononononononono
          A2P023: Geothermal energy systemnononoyesnononoyesyes
          A2P023: Waste heat recoverynoyesnoyesyesnonoyesno
          A2P023: Waste to energynononoyesnonononono
          A2P023: Polygenerationnonononononononono
          A2P023: Co-generationnonononononononono
          A2P023: Heat Pumpnoyesnoyesyesnonoyesyes
          A2P023: Hydrogennonononononononono
          A2P023: Hydropower plantnonononononononono
          A2P023: Biomassnononoyesnonononono
          A2P023: Biogasnononoyesnonononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesnoyesyesyes
          A2P024: Energy management systemnoyesyesyesnononoyesyes
          A2P024: Demand-side managementnoyesyesyesnonoyesyesyes
          A2P024: Smart electricity gridnonoyesyesnonoyesnono
          A2P024: Thermal Storagenonoyesyesyesnononono
          A2P024: Electric Storagenonoyesyesnonononono
          A2P024: District Heating and Coolingnoyesyesyesyesnononono
          A2P024: Smart metering and demand-responsive control systemsnoyesyesyesnonoyesyesyes
          A2P024: P2P – buildingsnononoyesnonononono
          A2P024: OtherElectric grid as virtual battery
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnoyesnonononono
          A2P025: Energy efficiency measures in historic buildingsnononoyesnonononono
          A2P025: High-performance new buildingsnononoyesyesnonoyesyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnononono
          A2P025: Urban data platformsnoyesyesyesnonononono
          A2P025: Mobile applications for citizensnonoyesyesyesnonoyesno
          A2P025: Building services (HVAC & Lighting)noyesyesyesnononoyesyes
          A2P025: Smart irrigationnononoyesyesnononono
          A2P025: Digital tracking for waste disposalnononoyesnonononono
          A2P025: Smart surveillancenonononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesyesnononono
          A2P026: e-Mobilitynononoyesyesnononono
          A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyesnononono
          A2P026: Car-free areanononoyesyesnononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementTest-Concept for bidirectional charging.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoYesNoYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNational standards apply.Energieausweis mandatory if buildings/ flats/ apartments are soldNS3700 Norwegian Passive House
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoYesNoNo
          A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Biogas
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • PPP models,
          • Local trading
          • Innovative business models,
          • Other
          • Local trading
          • Open data business models,
          • Circular economy models
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Affordability
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Affordability,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • Building / district Certification
          • Strategic urban planning
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • SECAP Updates
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Net zero carbon footprint
          • Energy Neutral
          • Energy Neutral,
          • Life Cycle approach
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Other
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Net zero carbon footprint,
          • Carbon-free,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          A3P009: OtherPositive Energy Balance for the demo site
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsRegulatory sandboxMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionOnsite Energy Ratio > 1ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Functional PEDReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban areaSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction,
          • Renovation
          • New construction
          • New construction
          • New construction
          • New construction
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development,
          • Retrofitting Area
          • New Development
          • New Development
          • Preservation Area
          • New Development
          • New Development
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction2025
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential00
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential10000300
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential0
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000.0100120
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesnonononononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenoyesnonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononoyesyesnononoyes
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnonononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyesnoyesyesno
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnoyesnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesnoyesyesnonoyesyes
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenoyesnoyesyesnononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononoyesyesnononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononoyesnononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononoyesnononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnoyesnoyesyesnononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits2 - Slightly important5 - Very important3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important2 - Slightly important5 - Very important4 - Important2 - Slightly important1 - Unimportant
          C1P001: Social acceptance (top-down)5 - Very important2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important4 - Important2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important
          C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
          C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
          C1P002: Energy autonomy/independence5 - Very important4 - Important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
          C1P002: Any other DRIVING FACTOR3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of public participation3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
          C1P003: Any other Administrative BARRIER4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Non-effective regulations4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Deficient planning3 - Moderately important4 - Important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Lack of well-defined process4 - Important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Rebound effect4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P009: Lack of awareness among authorities4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P010: Economic crisis3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P010: Risk and uncertainty4 - Important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important5 - Very important4 - Important
          C1P010: Lack of consolidated and tested business models4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
          C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Energy price distortion5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Monitoring/operation/management
          • None
          • Design/demand aggregation
          • Planning/leading,
          • Construction/implementation
          C1P012: Urban Services providers
          • Design/demand aggregation
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Design/demand aggregation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Design/demand aggregation
          • Design/demand aggregation
          • Design/demand aggregation
          • Design/demand aggregation
          • Monitoring/operation/management
          • None
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)